DNA motor programmed to navigate a network of tracks
Sugiyama Lab, Kyoto University iCeMS
The research utilizes the technology of DNA origami, where strands of DNA molecules are sequenced in a way that will cause them to self-assemble into desired 2D and even 3D structures. In this latest effort, the scientists built a network of tracks and switches atop DNA origami tiles, which made it possible for motor molecules to travel along these rail systems.
"We have demonstrated that it is not only possible to build nanoscale devices that function autonomously," explained Dr. Masayuki Endo of Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS), "but that we can cause such devices to produce predictable outputs based on different, controllable starting conditions."
The team, including lead author Dr. Shelley Wickham at Oxford, expects that the work may lead to the development of even more complex systems, such as programmable molecular assembly lines and sophisticated sensors.
"We are really still at an early stage in designing DNA origami-based engineering systems," elaborated iCeMS Prof. Hiroshi Sugiyama. "The promise is great, but at the same time there are still many technical hurdles to overcome in order to improve the quality of the output. This is just the beginning for this new and exciting field."
Original publication
Shelley F. J. Wickham, Jonathan Bath, Yousuke Katsuda, Masayuki Endo, Kumi Hidaka, Hiroshi Sugiyama, and Andrew J. Turberfield; "A DNA-based molecular motor that can navigate a network of tracks"; Nature Nanotechnology 2012.
Most read news
Original publication
Shelley F. J. Wickham, Jonathan Bath, Yousuke Katsuda, Masayuki Endo, Kumi Hidaka, Hiroshi Sugiyama, and Andrew J. Turberfield; "A DNA-based molecular motor that can navigate a network of tracks"; Nature Nanotechnology 2012.
Organizations
Related link
Other news from the department science
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.