The architects of the brain
How different receptors promote the formation of nerve cell processes
It all depends on a few amino acids
“Nerve cells communicate with chemical and electrical signals”, explains Wahle. “The electrical activity controls many developmental processes in the brain, and the neurotransmitter glutamate plays a decisive role in this.” In two different cell classes in the cerebral cortex of rats, the researchers studied the nine most common variants of a glutamate receptor, the so-called AMPA receptor. When glutamate docks on to this receptor, calcium ions flow into the nerve cells either directly through a pore in the AMPA receptor or through adjacent calcium channels. Depending on the variant, AMPA receptors consist of 800-900 amino acid building blocks, and already the exchange of one amino acid has important consequences for the calcium permeability. Among other things, calcium promotes the growth of new dendrites.
Different cell types, different mechanisms
One at a time, the Bochum team introduced the nine AMPA receptor variants into the nerve cells and observed the impact on the cell architecture. In several cases, this resulted in longer dendrites with more branches. This pattern was demonstrated both for several receptor variants that allow calcium ions to flow directly into the cell through a pore and for those that activate adjacent calcium channels. “It was surprising that in the two cell classes studied, different receptor variants triggered the growth of the dendrites”, says Dr. Mohammad Hamad from the Working Group on Developmental Neurobiology. “In the inhibitory interneurons, only one of the nine variants was effective. Calcium signals are like a toolbox. However, different cell classes in the cerebral cortex make use of the toolbox in different ways.”
Original publication
Hamad, M. I., Ma-Hogemeier, Z. L., Riedel, C., Conrads, C., Veitinger, T., Habijan, T., Schulz, J. N., Krause, M., Wirth, M. J., Hollmann, M., Wahle, P. (2011) Cell class-specific regulation of neocortical dendrite and spine growth by AMPA receptor splice and editing variants. Development 138
Original publication
Hamad, M. I., Ma-Hogemeier, Z. L., Riedel, C., Conrads, C., Veitinger, T., Habijan, T., Schulz, J. N., Krause, M., Wirth, M. J., Hollmann, M., Wahle, P. (2011) Cell class-specific regulation of neocortical dendrite and spine growth by AMPA receptor splice and editing variants. Development 138
Organizations
Other news from the department science
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.