New protein regulates water in the brain to control inflammation
A new protein, called aquaporin-4, is making waves and found to play a key role in brain inflammation, or encephalitis. This discovery is important as the first to identify a role for this protein in inflammation, opening doors for the development of new drugs that treat brain inflammation and other conditions at the cellular level rather than just treating the symptoms. This discovery was published in The FASEB Journal.
"Our study establishes a novel role for a water channel, aquaporin-4, in neuroinflammation, as well as a cell-level mechanism," said Alan S. Verkman, M.D., Ph.D., a senior researcher involved in the work from the Department of Medicine and the Department of Physiology at the University of California, San Francisco. "Our data suggest that inhibition or down-regulation of aquaporin-4 expression in brain and spinal cord may offer a new therapeutic option in diseases such as multiple sclerosis, neuromyelitis optica and other conditions associated with neuroinflammation."
Scientists compared normal mice and mice without genes for producing aquaporin-4 using a model of brain inflammation. These experiments showed significantly reduced brain inflammation in the mice that did not produce aquaporin-4. Researchers then systematically investigated the various possible causes of this reduced neuroinflammation and surprisingly found that aquaporin-4 deletion causes the brain to be less susceptible to inflammation, involving differences in astrocyte reaction to stress. The involvement of aquaporin-4 in brain inflammation provides a new determinant and better understanding of how the brain responses to inflammatory stresses. This suggests that using drugs or other agents that target this protein may be effective for treating a variety of conditions associated with brain or spinal cord inflammation.
"This a new lead in our efforts to stem inflammation in the brain," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "The importance of water movement in and out of cells cannot be understated, and this paper helps to clarify what has otherwise been a muddy view of aquaporins."
Original publication
Other news from the department science
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.