Breakthrough: Scientists harness the power of electricity in the brain
Someday, a paralyzed patient may be able to ‘think’ a foot into flexing or a leg into moving, using technology that harnesses the power of electricity in the brain, and scientists at University of Michigan School of Kinesiology are now one big step closer.
Researchers at School and colleagues from the Swartz Center for Computational Neuroscience at the University of California San Diego have developed technology that for the first time allows doctors and scientists to noninvasively isolate and measure electrical brain activity in moving people. This technology is a key component of the kind of brain-computer interfaces that would allow a robotic exoskeleton controlled by a patient’s thoughts to move that patient’s limb, said Daniel Ferris, associate professor in the School of Kinesiology and author of a trio of papers detailing the research.
“Of course that is not going to happen soon but a step toward being able to do that is the ability to record brain waves while somebody is moving around,” said Joe Gwin, first author on the papers and a graduate research fellow in the School of Kinesiology and the Department of Mechanical Engineering.
Using this technology, scientists can show which parts of the brain are activated and precisely when they are activated as subjects move in a natural environment. For example, when we walk signals originate in specific parts of the brain as messages travel from the brain to the muscles. When scientists understand where in the brain impulses occur, they can use that geographic information for many different applications. Previously, scientists could only measure electrical brain activity on non-moving patients.
Ferris likens isolating this brain electrical activity to putting a microphone in the middle of a symphony to discern only certain instruments in certain areas, say the oboe in the first chair, or the violin. As in an orchestra, there are many noisemakers in the brain producing excess electrical activity, or noise. Even the electrode itself produces noise when it moves relative to its source.
Researchers identified the brain activity they wanted to measure by attaching dozens of sensors to a subject who was either walking or running on a treadmill. They then used an MRI-based model of the head to figure out where in the brain that electrical activity originated. In this way, scientists could localize the sources of the brain activity they were interested in and ignore the rest of the activity if it did not originate in the brain.
Ferris, who also has an appointment in biomedical engineering, said there are a couple reasons scientists can do this type of measuring now when it wasn’t possible even a few years ago. Colleagues at the Swartz Center for Computational Neuroscience at the University of California San Diego devised the computational tools to do the measuring noninvasively in seated individuals, and without those tools the measuring would have been impossible. The two research groups then pushed farther and tried the measuring in walking and running subjects. Also, electrodes have gotten more sensitive and have a better signal to noise ratio, he said.
The military is also interested in this type of technology, which could be used to optimize soldier performance by monitoring the brain activity of soldiers in the field to know when soldiers are performing at their peak. It could also help the military understand how information can be best presented and handled by soldiers.
In fact, any industry or organization interested in understanding how the brain and body interact could benefit from knowing how the brain functions during a given task.
“We could image the brains of patients with various different types of neurological disorders, and we could potentially target rehabilitation to subsets of patients that show similar symptoms,” Gwin said. “If we could image the brain while going through some of this rehabilitation we could design the treatments better.”
Topics
Organizations
Other news from the department science
These products might interest you

Hose pressure transducer by HiTec Zang
Contactless pressure measurement for sterile applications
Easy-to-install tubing pressure sensors for diameters from 4.8-19.1 mm

FireSting-PRO by PyroScience
New fiber optic measuring device: Precise measurements even in the smallest volumes
Measure pH, oxygen and temperature even under sterile conditions

Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
More news from our other portals
Last viewed contents

Bioprinting breakthrough will let scientists print their own proteins at their benchtop - Nuclera raises $42.5M in first close of Series B for desktop protein printer
Robinow_syndrome
Category:Bile_acids
Fresenius Kabi and Octapharma Group enter into an Exclusive Agreement for a HESylated recombinant protein
Visual_phototransduction
