Scientist IDs genes that promise to make biofuel production more efficient, economical
A University of Illinois metabolic engineer has taken the first step toward the more efficient and economical production of biofuels by developing a strain of yeast with increased alcohol tolerance. Biofuels are produced through microbial fermentation of biomass crops, which yield the alcohol-based fuels ethanol and iso-butanol if yeast is used as the microbe to convert sugars from biomass into biofuels.
"However, at a certain concentration, the biofuels that are being created become toxic to the yeast used in making them. Our goal was to find a gene or genes that reduce this toxic effect," said Yong-Su Jin, an assistant professor of microbial genomics in the U of I Department of Food Science and Human Nutrition and a faculty member in the U of I's Institute for Genomic Biology.
Jin worked with Saccharomyces cerevisiae , the microbe most often used in making ethanol, to identify four genes (MSN2, DOG1, HAL1, and INO1) that improve tolerance to ethanol and iso-butanol when they are overexpressed.
"We expect these genes will serve as key components of a genetic toolbox for breeding yeast with high ethanol tolerance for efficient ethanol fermentation," he said.
To assess the overexpressed genes' contribution to the components that have limited biofuel production, the scientists tested them in the presence of high concentrations of glucose (10%), ethanol (5%), and iso-butanol (1%) and compared their performance to a control strain of S. cerevisiae.
Overexpression of any of the four genes remarkably increased ethanol tolerance, but the strain in which INO1 was overexpressed elicited the highest ethanol yield and productivity—with increases of more than 70 percent for ethanol volume and more than 340 percent for ethanol tolerance when compared to the control strain.
According to Jin, the functions of the identified genes are very diverse and unrelated, which suggests that tolerance to high concentrations of iso-butanol and ethanol might involve the complex interactions of many genetic elements in yeast.
"For example, some genes increase cellular viability at the expense of fermentation. Others are more balanced between these two functions," he said.
"Identification of these genes should enable us to produce transportation fuels from biomass more economically and efficiently. It's a first step in understanding the cellular reaction that currently limits the production process," he said.
Further study of these genes should increase alcohol tolerance even further, and that will translate into cost savings and greater efficiency during biofuel production, he added.
Topics
Organizations
Other news from the department science

Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
Last viewed contents

Rapid synthesis towards optically active alpha-aminocarbonyl therapeutics - New catalytic asymmetric reaction directly installs amines into carbonyl compounds
Metolazone
Category:Uncategorised_pharmacology_articles
Bothrops_lanceolatus
N-Phenethyl-4-piperidinone

How Cells Assemble Their Skeleton - Researchers study the formation of microtubules
Biopower
