What we eat affects our health — and can alter how our genes function
"We found a direct link between eating fiber and modulation of gene function that has anti-cancer effects..."
When we eat fiber, the gut microbiome produces short-chain fatty acids. These compounds are more than just an energy source for us: They have long been suspected to indirectly affect gene function. The researchers traced how the two most common short-chain fatty acids in our gut, propionate and butyrate, altered gene expression in healthy human cells, in treated and untreated human colon cancer cells, and in mouse intestines. They found direct epigenetic changes at specific genes that regulate cell proliferation and differentiation, along with apoptosis, or pre-programmed cell death processes — all of which are important for disrupting or controlling the unchecked cell growth that underlies cancer.
“We found a direct link between eating fiber and modulation of gene function that has anti-cancer effects, and we think this is likely a global mechanism because the short-chain fatty acids that result from fiber digestion can travel all over the body,” said Michael Snyder, PhD, Stanford W. Ascherman, MD, FACS Professor in Genetics. “It is generally the case that people’s diet is very fiber poor, and that means their microbiome is not being fed properly and cannot make as many short-chain fatty acids as it should. This is not doing our health any favors.”
Given the worrying rates of colon cancer in younger adults, the study findings could also spur conversation and research about the possible synergistic effects of diet and cancer treatment.
“By identifying the gene targets of these important molecules we can understand how fiber exerts its beneficial effects and what goes wrong during cancer,” Snyder added.
Original publication
Michael Nshanian, Joshua J. Gruber, Benjamin S. Geller, Faye Chleilat, Samuel M. Lancaster, Shannon M. White, Ludmila Alexandrova, Jeannie M. Camarillo, Neil L. Kelleher, Yingming Zhao, Michael P. Snyder; "Short-chain fatty acid metabolites propionate and butyrate are unique epigenetic regulatory elements linking diet, metabolism and gene expression"; Nature Metabolism, 2025-1-9
Most read news
Original publication
Michael Nshanian, Joshua J. Gruber, Benjamin S. Geller, Faye Chleilat, Samuel M. Lancaster, Shannon M. White, Ludmila Alexandrova, Jeannie M. Camarillo, Neil L. Kelleher, Yingming Zhao, Michael P. Snyder; "Short-chain fatty acid metabolites propionate and butyrate are unique epigenetic regulatory elements linking diet, metabolism and gene expression"; Nature Metabolism, 2025-1-9
Topics
Organizations
Other news from the department science
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.