An innovative antibiotic class for drug-resistant bacteria
New active compounds inspired by a bacterium
In 2024, the World Health Organization updated its list of bacterial pathogens that can develop resistance to antibiotics to include E. coli, A. baumannii, and Pseudomonas aeruginosa, among others. Despite the need for new antibiotics that target these priority pathogens, scientists do not have many candidates in (pre-)clinical development. One potential resistance-breaking compound is called darobactin, a naturally produced antibiotic first discovered in a bacterium by researchers in the US in 2019. Darobactin binds to an essential protein in bacterial cells and eventually causes their death. Previously, Rolf Müller, Jennifer Herrmann and colleagues identified that genetically engineered versions of darobactins have superior antibacterial activity. Specifically, a non-natural darobactin derivative (D22) inhibited growth of all critical pathogens mentioned above in lab assays.
For this new study, a larger team led by Müller and Herrmann tested the engineered compound against several priority bacterial infections in animals. First, in zebrafish embryos, D22 treatment cleared A. baumannii infection as effectively as ciprofloxacin, a broad-spectrum antibiotic used for complicated infections. Then they conducted a series of efficacy and dosing trials with mice:
- Best delivery method: Observations indicated that administering D22 as an injection was more effective than oral administration.
- Efficacy against P. aeruginosa: Repeated doses of D22 substantially limited P. aeruginosa bacterial growth in mice (thigh tissue infection) but didn’t fully clear the infection.
- Multi-dose experiments against E. coli: Administering D22 four times in 25 hours fully cleared E. coli in a severe infection model of peritonitis. Very good activity was also observed for single doses. Twice-daily D22 injections over three days significantly reduced bacterial presence in a complicated E. coli urinary tract infection, although not as effectively as the antibiotic gentamicin, which reduced bacterial loads below detection.
These results show how D22 can inhibit critical infections and highlights the compound’s promise for further development towards future clinical trials as “an innovative solution to fight antimicrobial resistance,” say the researchers.
Original publication
Andreas M. Kany, Franziska Fries, Carsten E. Seyfert, Christoph Porten, Selina Deckarm, María Chacón Ortiz, Nelly Dubarry, Swapna Vaddi, Miriam Große, Steffen Bernecker, Birthe Sandargo, Alison V. Müller, Eric Bacqué, Marc Stadler, Jennifer Herrmann, Rolf Müller; "In Vivo Activity Profiling of Biosynthetic Darobactin D22 against Critical Gram-Negative Pathogens"; ACS Infectious Diseases, 2024-11-20
Most read news
Original publication
Andreas M. Kany, Franziska Fries, Carsten E. Seyfert, Christoph Porten, Selina Deckarm, María Chacón Ortiz, Nelly Dubarry, Swapna Vaddi, Miriam Große, Steffen Bernecker, Birthe Sandargo, Alison V. Müller, Eric Bacqué, Marc Stadler, Jennifer Herrmann, Rolf Müller; "In Vivo Activity Profiling of Biosynthetic Darobactin D22 against Critical Gram-Negative Pathogens"; ACS Infectious Diseases, 2024-11-20
Topics
Organizations
Other news from the department science
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.