Key mechanisms identified for the regeneration of neurons
Researchers have shown how glial cells are reprogrammed into neurons via epigenetic modifications
Two teams, one led by Magdalena Götz, Head of the Stem Cell Center Department at Helmholtz Munich, Chair of Physiological Genomics at LMU, and researcher in the SyNergy Cluster of Excellence, and the other led by Boyan Bonev at the Helmholtz Pioneer Campus, explored the molecular mechanisms at play when glial cells are converted to neurons by a single transcription factor. Specifically, the researchers focused on small chemical modifications in the epigenome. The epigenome helps control which genes are active in different cells at different times. For the first time, the teams have now shown how coordinated the epigenome rewiring is, elicited by a single transcription factor.
Using novel methods in epigenome profiling, the researchers identified that a posttranslational modification of the reprogramming neurogenic transcription factor Neurogenin2 profoundly impacts the epigenetic rewiring and neuronal reprogramming. However, the transcription factor alone is not enough to reprogram the glial cells. In an important discovery, the researchers identified a novel protein, the transcriptional regulator YingYang1, as a key player in this process. YingYang1 is necessary to open up the chromatin for reprogramming, to which end it interacts with the transcription factor. “The protein Ying Yang 1 is crucial for achieving the conversion from astrocytes to neurons,” explains Götz. “These findings are important to understand and improve reprogramming of glial cells to neurons, and thus brings us closer to therapeutic solutions.”
Original publication
Allwyn Pereira, Jeisimhan Diwakar, Giacomo Masserdotti, Sude Beşkardeş, Tatiana Simon, Younju So, Lucía Martín-Loarte, Franziska Bergemann, Lakshmy Vasan, Tamas Schauer, Anna Danese, Riccardo Bocchi, Maria Colomé-Tatché, Carol Schuurmans, Anna Philpott, Tobias Straub, Boyan Bonev, Magdalena Götz; "Direct neuronal reprogramming of mouse astrocytes is associated with multiscale epigenome remodeling and requires Yy1"; Nature Neuroscience, 2024-7-2
Original publication
Allwyn Pereira, Jeisimhan Diwakar, Giacomo Masserdotti, Sude Beşkardeş, Tatiana Simon, Younju So, Lucía Martín-Loarte, Franziska Bergemann, Lakshmy Vasan, Tamas Schauer, Anna Danese, Riccardo Bocchi, Maria Colomé-Tatché, Carol Schuurmans, Anna Philpott, Tobias Straub, Boyan Bonev, Magdalena Götz; "Direct neuronal reprogramming of mouse astrocytes is associated with multiscale epigenome remodeling and requires Yy1"; Nature Neuroscience, 2024-7-2
Topics
Organizations
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.