Biomolecules identified at the nanoscale
New method for measuring amino acids
The distinction between peptide and protein seems somewhat arbitrary and depends solely on size: as long as no more than about 100 amino acids form a chain, it is a peptide. As soon as there are more, biology refers to them as proteins. Peptides occur in all kinds of biological processes. For example, as hormones or antibiotics. However, research into exactly how peptides work is still in its infancy. This is partly because no microscope is able to see the biological components of individual peptides down to the atomic level.
The research team led by Professor Uta Schlickum has combined different methods to make a scanning tunnelling microscope useful for peptide recognition. Although these microscopes are accurate down to the atomic level, they are unable to distinguish between different elements of a molecular structure. A collaboration between TU Braunschweig, the Max Planck Institute for Solid State Research in Stuttgart and other international scientists has now succeeded in making the measuring tip of the imaging device chemically sensitive and specialised to one of the amino acids in the peptide. This novel tip makes it possible for the first time to visualise and identify individual amino acids in complex biological chains under the microscope. This is a first step towards sequencing peptides on surfaces with the highest spatial resolution.
Original publication
Xu Wu, Bogdana Borca, Suman Sen, Sebastian Koslowski, Sabine Abb, Daniel Pablo Rosenblatt, Aurelio Gallardo, Jesús I. Mendieta-Moreno, Matyas Nachtigall, Pavel Jelinek, Stephan Rauschenbach, Klaus Kern, Uta Schlickum; "Molecular sensitised probe for amino acid recognition within peptide sequences"; Nature Communications, Volume 14, 2023-12-14
Most read news
Original publication
Xu Wu, Bogdana Borca, Suman Sen, Sebastian Koslowski, Sabine Abb, Daniel Pablo Rosenblatt, Aurelio Gallardo, Jesús I. Mendieta-Moreno, Matyas Nachtigall, Pavel Jelinek, Stephan Rauschenbach, Klaus Kern, Uta Schlickum; "Molecular sensitised probe for amino acid recognition within peptide sequences"; Nature Communications, Volume 14, 2023-12-14
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.