Breaking bad barriers through a molecular vacuum cleaner
A molecular vacuum cleaner
triglycerides are the form in which fat energy is stored in our tissue. “mycobacteria also accumulate triglycerides,” explains Lars Schäfer. “But in addition to store energy, these molecules are also a key component that contributes to seal their cellular barrier.” This high-energy molecule needs to be transported from inside the bacterial cell (the cytoplasmic space) through the membrane, to be ultimately deposited in the mycobacterial barrier. Until now, the precise details of this molecular journey were not known. “By teaming up with structural biologists Professor Markus Seeger and Dr. Sille Remm at Zurich, we used computer simulations to reveal how triglycerides are hunted from the transmembrane protein RV1410 that, akin to a vacuum cleaner, extracts them from the bacterial membrane via lateral portals in the protein structure.”
The relay race of the Trojan horse
But how are the triglycerides ultimately transported from the membrane and deposited to the barrier? Here comes the second intermediate actor LprG, a periplasmic protein which is anchored to the membrane and browses its surface chasing for triglycerides. LprG has a water-repellent (hydrophobic) pocket that once paired with RV1410 creates a greasy tunnel where the “baton” triglyceride is handed off in a relay race to ultimately reach the barrier. “We simulated the RV1410-LprG system embedded in a realistic mycobacterial membrane and describe this triglyceride-relay-race in atomistic detail,” says Dario De Vecchis. “One could think about the mycobacterial membrane as the Troy battlefield, were the scientists are trying to conquer the pathogen's ramparts by exploiting the RV1410-LprG system as the Trojan horse,” portrays Dario De Vecchis. Revealing the molecular pathway of triglycerides could open new strategies to target the RV1410-LprG system, weaken the mycobacterial barrier, enhance antimicrobial permeability, and ultimately lead to more effective therapies against tuberculosis.
Original publication
Original publication
Sille Remm, Dario De Vecchis, Jendrik Schöppe, Cedric A. J. Hutter, Imre Gonda, Michael Hohl, Simon Newstead, Lars V. Schäfer, Markus A. Seeger: "Structural basis for triacylglyceride extraction from mycobacterial inner membrane by MFS transporter Rv1410."; Nature Communications, 2023,
Organizations
Other news from the department science

Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
More news from our other portals
Last viewed contents
List_of_rice_diseases

Shrimp from Finding Nemo could help keep your white bread white - Ben-Gurion University researchers discover new principle in optics
Protea Biosciences Concludes New Technology License Agreement - LAESI technology identifies viral-infected cells in minutes
Spanish scientists identify a new ancestral enzyme that facilitates DNA repair - PrimPol allows cells to make copies of their DNA even when it is damaged, and prevents breaks in the chromosomes
New prostate cancer treatment may be riskier
Molecular target aims at aggressive prostate cancer - U-M researchers show antibody therapy targeted to cancer gene shrunk tumors in cells, mice

Merck and Japanese start-up launch collaboration - Both companies to accelerate development and manufacturing of viral vector-based gene therapy applications
