De-code of the crop
High-precision genome sequencing of buckwheat breeds hope for future harvests
KyotoU/Robin Hoshino
By altering specific genes using a method independent of common genome-editing techniques, the researchers successfully developed a self-fertile buckwheat variety as well as a new type of the crop with a sticky, mochi-like texture. This breeding method may contribute to a more diverse range of orphan crops than what is possible with existing genome editing technologies.
With the world's population predicted to reach 9.7 billion by 2050, increasing dependence on three major grain crops -- rice, wheat, and corn -- has raised interest in less-common orphan crops. Deciphering these crop genomes using next-generation sequencing technologies may promote their efficient breeding, representing a crucial step toward achieving the United Nations' Sustainable Development Goals of 'Zero Hunger', 'Good Health and Well-Being', and 'Responsible Consumption and Production'.
The international research team that made these findings is,led by Yasuo Yasui from the Graduate School of Agriculture at Kyoto University, includes RIKEN, Japan's National Agriculture and Food Research Organization, Chiba University, Kyoto Prefectural University, Kazusa DNA Research Institute, The Graduate University for Advanced Studies or SOKENDAI, Yunnan Agricultural University, and the University of Cambridge.
Original publication
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.