How drugs get into the blood

This knowledge facilitates the development of drugs that can also be taken in tablet form

17-Apr-2023 - Switzerland

computer simulations have helped researchers understand in detail how pharmaceutically active substances cross cell membranes. These findings can now be used to discover new drug candidates more efficiently.

Computer-generated image

Symbolic image

There is a need for new drugs. For example, many of the antibiotics that we have been using for a long time are becoming less effective. Chemists and pharmaceutical scientists are frantically searching for new active substances, especially those that can penetrate cell membranes, as these are the only ones that patients can take orally in the form of a tablet or syrup. Only these active ingredients pass through the intestinal wall in the small intestine and enter the bloodstream to reach the affected area in the body. For active ingredients that cannot penetrate the cell membrane, physicians have no choice but to inject them directly into the bloodstream.

Large molecules with potential

That is why researchers are trying to understand which molecules can penetrate cell membranes and how exactly they do this. For one important and promising class of substances – cyclic peptides – chemists at ETH Zurich have now decoded additional details of the relevant mechanism. “The more we know about this mechanism and the properties a molecule must have, the earlier and more effectively researchers can take this into account when developing new drugs,” says Sereina Riniker, a professor in the Department of Chemistry and Applied Biosciences. She led the study, which has now been published in the Journal of Medicinal Chemistry.

Cyclic peptides are ring-​shaped molecules that are much larger than the small molecules that make up the majority of today’s drugs. In some areas of application, however, chemists and pharmaceutical scientists are coming up against their limits with small molecules, which is why they are turning to larger molecules like the cyclic peptides. This substance class includes many pharmaceutically active natural substances, such as cyclosporine, an immunosuppressant that for decades has been used after organ transplants, and many antibiotics.

Possible only with computer modelling

Using computer modelling and a lot of supercomputer power, Riniker and her colleagues were able to elucidate how cyclic peptides similar to cyclosporine cross a membrane. “Only modelling allows us such detailed, high-​resolution insights, as there are no experiments that would let us observe an individual molecule crossing a membrane,” Riniker says.

To understand the mechanism, one must know how cyclic peptides are structured: they consist of a central ring structure to which side chains are attached. The molecules are flexible and can dynamically change their structure to adapt to their environment.

Dance through the cell membrane

Riniker’s simulations reveal in detail how a cyclic peptide penetrates the membrane: First, the molecule anchor itself to the membrane’s surface, before penetrating it perpendicular to the membrane. It then changes its three-​dimensional shape while passing through, rotating once about its longitudinal axis before reaching the other side of the membrane, where it exits again.

These changes in shape have to do with the different environments the molecule experiences as it moves through the membrane: The body consists largely of water. Both inside and outside of cells, biochemical molecules are mostly present in aqueous solution. Cell membranes, on the other hand, are made up of fatty acids, so water-​repellent conditions prevail within them. “To enable it to cross the membrane, the cyclic peptide changes its three-​dimensional shape to briefly become as hydrophobic as possible,” Riniker explains.

Changing molecular side chains

For the present study, the researchers investigated eight different cyclic peptides. These are model peptides with no medicinal effect – scientists at pharmaceutical giant Novartis developed them for basic research, which is why Riniker also collaborated with Novartis researchers for this study.

The new findings can now be used in discovering cyclic peptides as new drug candidates. However, Riniker points out a certain trade-​off: there are side chains that provide ideal conditions for cyclic peptides to anchor to the membrane surface, but that make it difficult for the peptides to cross the membrane. This new knowledge helps researchers to give advance thought to which side chains they want to use and where on the molecule they are most helpful. All of this could speed up drug discovery and development by ensuring right from the outset that researchers are investigating potential active ingredients that can eventually be taken as a tablet.

Original publication

Other news from the department science

Most read news

More news from our other portals

Is artificial intelligence revolutionizing the life sciences?

Last viewed contents

Researchers decode new antibiotic - Combined attack minimizes resistance development

Researchers decode new antibiotic - Combined attack minimizes resistance development

Dynamic images show rhomboid protease in action

Dynamic images show rhomboid protease in action

Those who live longer have fewer children - The time between two generations sets the price of fertility

Those who live longer have fewer children - The time between two generations sets the price of fertility

World record broken for thinnest X-ray detector ever created - Highly sensitive and with a rapid response time, the new X-ray detector is less than 10 nanometres thick and could one day lead to real-time imaging of cellular biology

World record broken for thinnest X-ray detector ever created - Highly sensitive and with a rapid response time, the new X-ray detector is less than 10 nanometres thick and could one day lead to real-time imaging of cellular biology

Intercell announces initiation in the U.S. of a Phase III study for vaccine to protect children against Japanese Encephalitis

Chinese scientists successfully crack the genome of diploid cotton

BASF to invest USD 33 million in R&D facilities in Research Triangle Park - Focus on plant biotechnology and crop protection research

BASF to invest USD 33 million in R&D facilities in Research Triangle Park - Focus on plant biotechnology and crop protection research

New radiopharmaceutical based on DARPin scaffold for cancer diagnosis - 99Tc-artificial protein chelate complex ready for preclinical trials

New radiopharmaceutical based on DARPin scaffold for cancer diagnosis - 99Tc-artificial protein chelate complex ready for preclinical trials

Chakra Biotech Sdn Bhd Completes Series B Investment Round

New AI tool for brain tumor diagnostics - A deep-learning algorithm that can automatically detect and evaluate brain tumors on PET scans

New AI tool for brain tumor diagnostics - A deep-learning algorithm that can automatically detect and evaluate brain tumors on PET scans

Researchers lay groundwork for potential dog-allergy vaccine - Scientists have identified a series of molecular candidates for those parts of dog allergens that cause immune reactions in people

Researchers lay groundwork for potential dog-allergy vaccine - Scientists have identified a series of molecular candidates for those parts of dog allergens that cause immune reactions in people

Merck Presents First Curious Mind Researcher Award