Dieting: brain amplifies signal of hunger synapses
Possible target for drugs to combat the yo-yo effect
Many people who have dieted are familiar with the yo-yo effect: after the diet, the kilos are quickly put back on. Researchers from the Max Planck Institute for Metabolism Research and Harvard Medical School have now shown in mice that communication in the brain changes during a diet: The nerve cells that mediate the feeling of hunger receive stronger signals, so that the mice eat significantly more after the diet and gain weight more quickly. In the long term, these findings could help developing drugs to prevent this amplification and help to maintain a reduced body weight after dieting.

Symbolic image
pixabay.com
"People have looked mainly at the short-term effects after dieting. We wanted to see what changes in the brain in the long term," explains Henning Fenselau, a researcher at the Max Planck Institute for Metabolism Research, who led the study.
To this end, the researchers put mice on a diet and assessed which circuits in the brain changed. In particular, they examined a group of neurons in the hypothalamus, the AgRP neurons, which are known to control the feeling of hunger. They were able to show that the neuronal pathways that stimulate AgRP neurons sent increased signals when the mice were on a diet. This profound change in the brain could be detected for a long time after the diet.
Preventing the yo-yo effect
The researchers also succeeded in selectively inhibiting the neural pathways in mice that activate AgRP neurons. This led to significantly less weight gain after the diet. "This could give us the opportunity to diminish the yo-yo effect," says Fenselau. "In the long term, our goal is to find therapies for humans that could help maintaining body weight loss after dieting. To achieve this, we continue to explore how we could block the mechanisms that mediate the strengthening of the neural pathways in humans as well."
“This work increases understanding of how neural wiring diagrams control hunger. We had previously uncovered a key set of upstream neurons that physically synapse onto and excite AgRP hunger neurons. In our present study, we find that the physical neurotransmitter connection between these two neurons, in a process called synaptic plasticity, greatly increases with dieting and weight loss, and this leads to long-lasting excessive hunger”, comments co-author Bradford Lowell from Harvard Medical School.
Original publication
Katarzyna Grzelka, Hannah Wilhelms, Stephan Dodt, Marie-Luise Dreisow, Joseph C. Madara, Samuel J. Walker, Chen Wu, Daqing Wang, Bradford B. Lowell, Henning Fenselau A synaptic amplifier of hunger for regaining body weight in the hypothalamus Cell Metabolism, 24. März 2023
Original publication
Katarzyna Grzelka, Hannah Wilhelms, Stephan Dodt, Marie-Luise Dreisow, Joseph C. Madara, Samuel J. Walker, Chen Wu, Daqing Wang, Bradford B. Lowell, Henning Fenselau A synaptic amplifier of hunger for regaining body weight in the hypothalamus Cell Metabolism, 24. März 2023
Organizations
Other news from the department science

Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.