Tailor-made Metal Complexes for Medical Diagnostics and Therapy
Chemists study manganese, lutetium, and actinium compounds for potential applications in medicine
Tailor-made chemical complexes of certain elements from the group of metals could be suitable for use in a special way in medical imaging as well as potential applications in personalised precision medicine. This has been demonstrated by a research team led by Prof. Dr Peter Comba at the Institute of Inorganic Chemistry of Heidelberg University. In their basic research, the Heidelberg scientists worked with manganese, lutetium, and actinium ions. Their work focussed on ligands with a so-called bispidine scaffold. These compounds are extremely rigid and can bind metal ions with great stability and selectivity.

Tailor-made metal complexes could be suitable for use in a special way in medical imaging as well as potential applications in personalised precision medicine.
Patrick Arthur Cieslik
In their work with manganese, a transition metal with special properties such as the ability to boost the contrast in magnetic resonance imaging (MRI), the research team synthesised three different bispidine ligands and their manganese(II) complexes. They exhibit complex stabilities up to ten billion times greater than those of zinc(II), the major competitor of manganese(II) in biological systems. According to Prof. Comba, these compounds are especially well suited as contrast agents in MRI because they do not exchange the manganese ions for zinc ions in animals and humans.
Until now, gadolinium(III) substances were used almost exclusively for this purpose. In recent years, however, safety concerns have increased because free gadolinium(III) ions are toxic, the chemist explains. “This is also true for free manganese(II) ions. However, because manganese, unlike gadolinium, is essential for the human body, there are natural mechanisms that can remove manganese(II) from the body. Further developing these substances for clinical applications can thus be a worthwhile goal,” states Comba. He reports that the quality of initial MRI images in mice with one of the manganese complexes developed in Heidelberg is comparable to the results attained in images with a clinically tested gadolinium contrast agent.
In addition to these new manganese-selective ligands, Dr Patrick Cieslik also developed a bispidine scaffold that forms very stable complexes with the metals lutetium-177 and actinium-225. This ligand is a so-called bifunctional chelator (BFC) with a dual function and is therefore part of a modular system. A BFC can bind with a radioactive metal ion as well as be coupled to a biological vector such as an antibody to detect specific molecules or tissues in the body. In this instance the BFC was coupled to a peptide that can locate tumour cells in the body.
Such a chemical complex – also called a conjugate – can be marked with radionuclides that are important in imaging or treatment. “We were able to demonstrate that our conjugates, with the medically important radionuclides lutetium-177 and actinium-225, exhibit similarly good properties as conjugates with DOTA, a bifunctional chelator already in clinical use,” explains Dr Cieslik, who conducted research for his doctoral thesis in Prof. Comba’s team. “The major advantage of the BFC that we developed is that, unlike DOTA systems, it can be labelled with radioactive metal ions very quickly and under mild conditions. Conjugates can thus be used with very sensitive antibodies that could be relevant for diagnosis and treatment in personalised medicine,” explains Patrick Cieslik.
Original publication
D. Ndiaye, P. Cieslik, H. Wadepohl, A. Pallier, S. Meme, P. Comba, E. Toth: Mn2+ Bispidine Complex Combining Exceptional Stability, Inertness, and MRI Efficiency, J. Am. Chem. Soc., 2022, 144, 22212-22220.
P. Cieslik, M. Kubeil, K. Zarschler, K. Anger, F. Brandt, M. Ullrich, H. Wadepohl, J. Pietzsch, H. Stephan, P. Comba: Toward personalized medicine: one chelator for imaging and therapy with lutetium-177 and actinium-225, J. Am. Chem. Soc., 2022, 144, 21555-21567.
Original publication
D. Ndiaye, P. Cieslik, H. Wadepohl, A. Pallier, S. Meme, P. Comba, E. Toth: Mn2+ Bispidine Complex Combining Exceptional Stability, Inertness, and MRI Efficiency, J. Am. Chem. Soc., 2022, 144, 22212-22220.
P. Cieslik, M. Kubeil, K. Zarschler, K. Anger, F. Brandt, M. Ullrich, H. Wadepohl, J. Pietzsch, H. Stephan, P. Comba: Toward personalized medicine: one chelator for imaging and therapy with lutetium-177 and actinium-225, J. Am. Chem. Soc., 2022, 144, 21555-21567.
Topics
Organizations
Other news from the department science

Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
More news from our other portals
Last viewed contents

Antimicrobial resistance is drastically rising
€10 million for developing sustainable raw materials for chemical industry

LEDs from bacterial production - Sustainable light sources
List_of_countries_by_HIV/AIDS_adult_prevalence_rate
Agilent aigns agreement to acquire assets from Young In Scientific Co. Ltd.

White biotechnology enables carbon recycling - LanzaTech and BASF achieve first milestone in utilizing industrial off-gases for chemical production
Biocytogen Announces Collaboration with FineImmune to Develop TCR-Mimic Antibody-Based Cell Therapy
Idenix Pharmaceuticals Presents Data on IDX184 for the Treatment of Hepatitis C Virus (HCV)
Category:Thyroid_disease
