New solution for stem cell manufacturing
A unique 3D printed system for harvesting stem cells from bioreactors
pixabay.com
Stem cells offer great promise in the treatment of many diseases and injuries, from arthritis and diabetes to cancer, due to their ability to replace damaged cells. However, current technology used to harvest stem cells is labour intensive, time consuming and expensive.
Biomedical engineer Professor Majid Warkiani from the University of Technology Sydney led the translational research, in collaboration with industry partner Regeneus – an Australian biotechnology company developing stem cell therapies to treat inflammatory conditions and pain.
“Our cutting-edge technology, which uses 3D printing and microfluidics to integrate a number of production steps into one device can help make stem cell therapies more widely available to patients at a lower cost,” said Professor Warkiani.
“While this world-first system is currently at the prototype stage, we are working closely with biotechnology companies to commercialise the technology. Importantly, it is a closed system with no human intervention, which is necessary for current good manufacturing practices,” he said.
Microfluidics is the precise control of fluid at microscopic levels, which can be used to manipulate cells and particles. Advances in 3D printing have allowed for the direct construction of microfluidic equipment, and thus rapid prototyping and building of integrated systems.
The new system was developed to process mesenchymal stem cells, a type of adult stem cell that can divide and differentiate into multiple tissue cells including bone, cartilage, muscle, fat, and connective tissue.
Mesenchymal stem cells are initially extracted from human bone marrow, fat tissue or blood. They are then transferred to a bioreactor in the lab and combined with microcarriers to allow the cells to proliferate.
The new system combines four micromixers, one spiral microfluidic separator and one microfluidic concentrator to detach and separate the mesenchymal stem cells from microcarriers and concentrate them for downstream processing.
Professor Warkiani said other bioprocessing industrial challenges can also be addressed using the same technology and workflow, helping to reduce costs and increase the quality of a range of life-saving products including stem cells and CAR-T cells.
Original publication
Other news from the department science
These products might interest you
Biostat STR by Sartorius
Biostat STR Generation 3 Bioreactors
Engineered for Ultimate Upstream Performance
Ambr® 250 HT Consumables by Sartorius
Efficient bioprocesses with single-use bioreactors
Minimise cleaning effort and maximise flexibility for cell and microbial cultures
Ambr® 250 Modular by Sartorius
Mini bioreactors for cell and gene therapies with high scalability
Maximise your process development with reliable single-use vessels
Brooks Instrument SLA Biotech-Serie by Brooks Instrument
Control bioprocesses efficiently and precisely with flow controllers for biotechnology applications
The SLA Biotech series has been developed specifically for the requirements in bioprocesses
Flexcell Systems by Dunn
Flexcell Cell Stretching Bioreactors for Life Science Research
Used in over 1300 laboratories worldwide, and cited in over 4000 research publications
SLAMf Biotech-Serie Massendurchflussregler by Brooks Instrument
SLAMf Mass Flow Controllers Designed Specifically for Biotech (IP66 / NEMA 4X)
Special equipment for biotech process plants, suitable for splash water and high-pressure cleaning
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.