Consumer protection: Novel method for detecting hormonally active substances
Analytical method for risk assessment of products and food
pixabay.com
Rettke et al
They are almost everywhere - in food, washing powder, dishwashing detergent, cosmetic products, in medicines as well as in drinking and waste water: hormonally active compounds such as synthetic estrogen derivatives, which are the main ingredient in hormonal contraceptives, or the "bulk chemical" bisphenol A (BPA), which is used for example in beverage bottles or food cans. Its harmful effects on humans and the environment have long been proven.
However, simple detection of endocrine disruptors for effective monitoring and reliable risk assessment of products and waters is a challenge due to the structural diversity of the substances. Previous analytical methods are usually based on complex laboratory-diagnostic procedures or do not reach the required detection limits. The new method developed by scientists at the Universities of Dresden and Leipzig could now remedy this situation, which is why a patent application has been filed.
"Our method detects hormonally active compounds using immobilized sulfotransferases and microparticles and includes a kit for detecting the compounds in food, cosmetics, water samples and much more. To this end, we have implemented this enzyme of estrogen metabolism into a biosensor that serves as a "capture probe" for estrogen-like compounds. Depending on the concentration of estrogen-like compounds in the detection solution, the binding of microparticles to a biochip is impaired and thus even low concentrations of hormonally active substances can be detected quickly and easily," explains Prof. Tilo Pompe from the University of Leipzig.
"In particular, I would like to point out the modularity of implementing an estrogen-metabolizing enzyme, as the approach is not limited to this specific enzyme, but also allows the use of other hormone-metabolizing or hormone-binding proteins in a multiplex assay. This could open new approaches to cover the whole complexity of evaluating hormonally active substances without animal testing," adds Dr. Kai Ostermann from Technische Universität Dresden.
Original publication
Other news from the department science
These products might interest you
Octet R2 / Octet R4 / Octet R8 by Sartorius
Full power on 2, 4 or 8 channels: Label-free and GxP-compliant analysis of molecular interactions
Innovative label-free real-time protein quantification, binding kinetics and rapid screenings
Octet RH16 and RH96 by Sartorius
Efficient protein analysis for process optimisation and manufacturing control in high-throughput
Label-free protein quantification and characterization of protein-protein interactions
Octet SF3 by Sartorius
Surface Plasmon Resonance (SPR) using Single Dynamic Injections for Kinetics and Affinities
Curvature is Key - Adding a ‘Third Dimension’ to the Binding Curve
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.