Brain cell membranes' lipids may play big role in Alzheimer's progression
Lipids have been largely overlooked for Alzheimer's disease therapeutics
Alzheimer's disease is predominant in elderly people, but the way age-related changes to lipid composition affect the regulation of biological processes is still not well understood. Links between lipid imbalance and disease have been established, in which lipid changes increase the formation of amyloid plaques, a hallmark of Alzheimer's disease.

Links between lipid imbalance and disease have been established, in which lipid changes increase the formation of amyloid plaques, a hallmark of Alzheimer's disease. This imbalance inspired researchers to explore the role of lipids comprising the cellular membranes of brain cells. In Biointerphases, the researchers report on the significant role lipids may play in regulating C99, a protein within the amyloid pathway, and disease progression.
Amanda Dyrholm Stange, Jenny Pin-Chia Hsu, Lisbeth Ravnkilde, Nils Berglund, and Birgit Schiøtt
This imbalance inspired researchers from Aarhus University in Denmark to explore the role of lipids comprising the cellular membranes of brain cells.
In Biointerphases, by AIP Publishing, the researchers report on the significant role lipids may play in regulating C99, a protein within the amyloid pathway, and disease progression. Lipids have been mostly overlooked from a therapeutic standpoint, likely because their influence in biological function is not yet fully understood.
Toxic amyloid plaques are formed within the brain when a series of enzymes cleave the protein APP, which sits within the neuronal cell membrane, to form C99, which in turn is cleaved to release the amyloid-beta peptide that can form plaques.
Both C99 and APP are able to protect themselves from cleavage by forming homodimers, a protein composed of two polypeptide chains that are identical. The interaction between C99 molecules is regulated by lipids that make up the membrane in which the protein sits.
"We showed that a change in the cholesterol content of the neuronal cell membrane can change how the C99 dimerizes," said Amanda Dyrholm Stange, one of the authors. "Our work suggests age-related changes to cholesterol content in the membrane weakens the C99-C99 interaction, which consequently decreases the 'protective' effect of the dimerization process, leading to the hypothesis of why more toxic amyloid-beta peptides are released in the elderly."
Therapeutics for Alzheimer's disease currently "have a very high failure rate, with no therapeutics developed for a very long period of time, so a novel strategy is desperately needed," said co-author Nils Anton Berlund. "Attempting to modulate the composition of the lipid membrane would be an entirely new class of Alzheimer's disease therapeutics but also immensely challenging without side effects."
The researchers postulate shifting the strategy away from targeting proteins to instead targeting the lipid concentration of membranes may be worthwhile.
"We hope our work will lead the pharmaceutical/biotechnology sector to choose lipid modulation as a means for targeting in drug development, because these changes in lipid composition are linked not just to Alzheimer's but a large host of diseases -- from diabetes to cardiovascular disease," said co-author Birgit Schiøtt. "We also hope it will lead to more research and funding toward understanding the fundamental science behind the possible regulatory roles of lipids."
Original publication
Original publication
Amanda Dyrholm Stange, Jenny Pin-Chia Hsu, Lisbeth Ravnkilde Kjølbye, Nils Anton Berglund, and Birgit Schiøtt; "The effect of cholesterol on the dimerization of C99--a molecular modeling perspective"; Biointerphases; June 15, 2021
Organizations
Other news from the department science

Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
More news from our other portals
Last viewed contents

Genome sequence of fuel-producing alga announced
Bionic plants
Medigenomix Receives Award for the Establishment of Relevant SNPs According to Gene Diagnostic and Pharmacogenetic

Lifespin secures bridge financing - Artificial intelligence to determine health status and diagnose diseases

Plant stress transformed into rapid tests for dangerous chemicals - Inexpensive method detects synthetic cannabinoids, banned pesticides
In battle for real estate, a disordered protein wins out
Successful ACHEMA closes in Frankfurt

German Accelerator Appoints Marc Filerman as CEO Life Sciences

Valuable raw materials from olive waste - ETH spin-off Gaia Tech transforms waste from olive oil production into high-quality antioxidants for use in cosmetics or food
Pharmalink announces positive results in Phase 2b trial of Nefecon
