Sweet coating for sour bones
Coating improves bone‐implant integration under osteoporosis: Physiological release of chemically-modified glycans from titanium implants suppresses inflammation for better bone healing
osteoporosis is a leading global health challenge. Besides its own adverse effects, it also impairs the function of bone implants - normally made of a metal called titanium (Ti). Because there is less bone than normal in the implantation site, the implants could easily loosen, and persistent inflammation often accompanies.

Physiological release of chemically-modified glycans from titanium implants suppresses inflammation for better bone healing
Dr. Zhenzhen Wang, University of Macau
Recently, Chinese scientists from the University of Macau and Nanjing University, in collaboration with National Dental Centre Singapore, invent a bioactive coating that can be chemically linked onto normal Ti surface. This coating, made from a chemically-modified glycan (a string of sugars), can sequentially turn on and off inflammation on bone implants. When applied under osteoporotic conditions, it first turns on "good inflammation" by instructing host macrophages to release the molecules that can activate bone cells and promote healing; when the bone cells grow and function to an extent, they naturally secrete an enzyme, called alkaline phosphatase, to cut the chemically-modified glycan from the Ti surface. This "sugar-coated bullets" can specifically kill macrophages to turn off "bad inflammation" for better healing and higher safety.
The lead contact and corresponding author of this paper, Prof Chunming Wang at the University of Macau, said: "Interestingly, these macrophages to be killed in the latter part of this healing process, are exactly the guys who have made the major contribution to release pro-bone forming cytokines in the earlier stage. So, we described this design as a 'bridge-burning' strategy." He indicates that this coating's main advantage is to maximize the power of the limited number of bone cells around the implants under osteoporosis.
The co-corresponding author, Prof Lei Dong at Nanjing University, added that under these pathological conditions it is unrealistic to sharply increase the number or stimulate the function of bone cells around the implants to achieve better bone-implant integration. "Our method harnesses the inherent power of immune responses to enhance implanting efficacy, without using complicated methods that might bring about safety issues. "
Based on this coating's favourable performance in a rat osteoporosis model, both investigators anticipate next-stage research to be carried out in larger animals.
Original publication
Other news from the department science

Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.