Better wastewater treatment? It's a wrap
Rice's trap-and-zap strategy for antibiotic resistant bugs becomes wrap, trap and zap
A shield of graphene helps particles destroy antibiotic-resistant bacteria and free-floating antibiotic resistance genes in wastewater treatment plants.

Improved bacterial affinity and reactive oxygen species generation enhances antibacterial inactivation in wastewater by graphene oxide-wrapped nanospheres developed by scientists at Rice University and Tongji University, Shanghai. Antibiotic resistance genes (eARG) released by inactivated antibiotic resistant bacteria (ARB) in the vicinity of photocatalytic sites on the spheres facilitates their degradation.
Alvarez Research Group/Rice University
Think of the new strategy developed at Rice University as "wrap, trap and zap."
The labs of Rice environmental scientist Pedro Alvarez and Yalei Zhang, a professor of environmental engineering at Tongji University, Shanghai, introduced microspheres wrapped in graphene oxide in the Elsevier journal Water Research.
Alvarez and his partners in the Rice-based Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT) have worked toward quenching antibiotic-resistant "superbugs" since first finding them in wastewater treatment plants in 2013.
"Superbugs are known to breed in wastewater treatment plants and release extracellular antibiotic resistance genes (ARGs) when they are killed as the effluent is disinfected," Alvarez said. "These ARGs are then discharged and may transform indigenous bacteria in the receiving environment, which become resistome reservoirs.
"Our innovation would minimize the discharge of extracellular ARGs, and thus mitigate dissemination of antibiotic resistance from wastewater treatment plants," he said.
The Rice lab showed its spheres -- cores of bismuth, oxygen and carbon wrapped with nitrogen-doped graphene oxide -- inactivated multidrug-resistant Escherichia coli bacteria and degraded plasmid-encoded antibiotic-resistant genes in secondary wastewater effluent.
The graphene-wrapped spheres kill nasties in effluent by producing three times the amount of reactive oxygen species (ROS) as compared to the spheres alone.
The spheres themselves are photocatalysts that produce ROS when exposed to light. Lab tests showed that wrapping the spheres minimized the ability of ROS scavengers to curtail their ability to disinfect the solution.
The researchers said nitrogen-doping the shells increases their ability to capture bacteria, giving the catalytic spheres more time to kill them. The enhanced particles then immediately capture and degrade the resistant genes released by the dead bacteria before they contaminate the effluent.
"Wrapping improved bacterial affinity for the microspheres through enhanced hydrophobic interaction between the bacterial surface and the shell," said co-lead author Pingfeng Yu, a postdoctoral research associate at Rice's Brown School of Engineering. "This mitigated ROS dilution and scavenging by background constituents and facilitated immediate capture and degradation of the released ARGs."
Because the wrapped spheres are large enough to be filtered out of the disinfected effluent, they can be reused, Yu said. Tests showed the photocatalytic activity of the spheres was relatively stable, with no significant decrease in activity after 10 cycles. That was significantly better than the cycle lifetime of the same spheres minus the wrap.
Original publication
Other news from the department science

Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
More news from our other portals
Last viewed contents
Evogene to Establish Research and Development Facility in the United States
IDT Opens Molecular Biology R&D Facility in Redwood City - Dr Caifu Chen to lead new product development at California site

Can proteins bind based only on their shapes? - A team using the nation’s fastest supercomputer to look at protein binding finds that some binding processes are simpler than expected

Acrongenomics, Inc. - Genf, Switzerland

Intestinal bacteria could influence the development of multiple sclerosis

New study on the benefits of Covid-19 nasal spray vaccination - Another milestone reached: researchers work together with Swiss biotech start-up to further develop the vaccine
Oil dispersants can suppress natural oil-degrading microorganisms

Leibniz-Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP) - Berlin, Germany
Translational Genomics Research Institute (TGEN) - Phoenix, USA
IDT’s San Diego Manufacturing Facility Receives ISO 14001 Certification

Watching myelin patterns form - First-ever “live” observation of formation and repair of myelin sheaths around nerve fibers
