Stem cell identity unmasked by single cell sequencing technology
Scientists from The University of Queensland's Diamantina Institute have revealed the difference between a stem cell and other blood vessel cells using gene-sequencing technology.

cientists from The University of Queensland's Diamantina Institute have revealed the difference between a stem cell and other blood vessel cells using gene-sequencing technology.
Pixabay
Leading skin cancer and stem cell researcher Professor Kiarash Khosrotehrani said the findings provided evidence of how stem cells express genes that allow them to be identified within a blood vessel.
"Until now, we couldn't accurately say how a stem cell differed from the other cells without preconceived ideas," Professor Khosrotehrani said.
"We hypothesised that stem cells expressed genes that could separate them from other cells inside the blood vessel."
UQDI Senior Lecturer Dr Jatin Patel performed the study and looked at every single cell in the largest artery, the aorta, and identified the genes expressed by each cell through sequencing.
"This allowed us to examine every cell without any bias or pre-conceived idea of whether it is a stem cell or not," Dr Patel said.
The study used single-cell RNA sequencing to look at the gene expression of each cell and group common cells together into separate populations.
UQ Institute for Molecular Bioscience Senior Research Officer Dr Sam Lukowski performed the analysis.
"We used specialised algorithms to group cells that express similar sets of genes into clusters," Dr Lukowski explained.
"What we found is that these stem cells form little groups within the blood vessel and that is how you differentiate them from other cells."
Knowing the exact profile of a stem cell will help researchers develop new treatment options for conditions like skin cancer, heart attacks and wound healing.
"This will have an impact on how we treat conditions which are the result of dysfunctional blood vessel behaviour," Professor Khosrotehrani said.
"We know that if you can target these stem cells, then you can reduce blood vessel formation and potentially stop diseases like skin cancer metastasis."
Previous research by Professor Khosrotehrani found that stopping the spread of melanoma to other parts of the body might be as simple as cutting off the blood supply to cancer.
"Blood vessels are vital because tumours can't grow without them - they feed the tumours and allow the cancer to spread," he said.
"If you get rid of these stem cells, then the blood vessels don't form, and the tumours don't grow or spread to other locations."
In situations where blood vessels are missing or are clogged, providing more stem cells might generate new blood vessels and allow the supply of oxygen in cardiovascular diseases such as heart attacks, stroke or leg ischemia.
Professor Khosrotehrani had hypothesised this method of stem cell identification and said these findings provided answers to scientific debate.
"We've been working on this type of research for over ten years and the model we've found matches perfectly with our previous findings," he said.
"The availability of the data publicly will allow scientists from all over the world to hopefully end some of the controversy around the identity and definition of these stem cells."
Other news from the department science

Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
More news from our other portals
Last viewed contents
Traditional_Chinese_medicine
New study supports use of PCA3-based test for prostate cancer diagnosis - European commercialization in progress
Nanotube-based sensors can be implanted under the skin for a year

A new treatment strategy against MERS - Licensed drugs effective in cells

Sharks' skin has teeth in the fight against hospital superbugs

“Genetic variants associated with educational attainment” can also have positive implications for lifestyle - Major population study investigates the interplay between genetics, educational attainment and cardiovascular disease
Category:Pharmaceutical_companies_of_India
PBL awarded two US patents on RNAi

New gel breaks down alcohol in the body - Reducing health damage caused by alcohol
