How a fungus can cripple the immune system
Research team clarifies the mechanism of gliotoxin, a mycotoxin from the fungus Aspergillus fumigatus
Jan-Peter Kasper/FSU
An international research team led by Prof. Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defences, enabling a potentially fatal fungal infection to develop.
Among other factors, it is gliotoxin – a potent mycotoxin – that is responsible for the pathogenicity of Aspergillus fumigatus. “It was known,” says study manager Werz of the Institute of Pharmacy at the University of Jena, “that this substance has an immunosuppressive effect, which means that it weakens the activity of cells of the immune defence system.” However, it had not been clear previously how exactly this happens. Werz and his team colleagues have now studied this in detail and have clarified the underlying molecular mechanisms.
Immune cells communicate with one another
To achieve this, the researchers brought immune cells into contact with synthetically produced gliotoxin. These cells, called neutrophilic granulocytes, represent the first line of the immune defence system. “Their task is to detect pathogens and eliminate them,” explains Werz. As soon as such a cell comes into contact with a pathogen, for example a fungus, it releases specific messenger substances (leukotrienes) into the blood, which attract other immune cells. Once a sufficiently large number of immune cells has gathered, they can render the intruder harmless.
Mycotoxin switches off enzyme
This does not happen if the pathogen Aspergillus fumigatus is involved. As the Jena scientists were able to show, gliotoxin ensures that production of the messenger substance leukotrieneB4 in the neutrophilic granulocytes is inhibited, so that they are unable to send a signal to other immune cells. This is caused by a specific enzyme (LTA4 hydrolase) being switched off by the mycotoxin. “This interrupts communication between the immune cells and destroys the defence mechanism. As a result, it is easy for spores – in this case the fungus – that enter the organism to infiltrate tissues or organs,” says Werz.
Original publication
König S et al.; "Gliotoxin from Aspergillus fumigatus Abrogates Leukotriene B4 Formation through Inhibition of Leukotriene A4 Hydrolase"; Cell Chemical Biology; 26, 1-11 (2019)
Most read news
Original publication
König S et al.; "Gliotoxin from Aspergillus fumigatus Abrogates Leukotriene B4 Formation through Inhibition of Leukotriene A4 Hydrolase"; Cell Chemical Biology; 26, 1-11 (2019)
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.