Preventing Clumping: How to Keep Proteins Active
Copyright: Forschungszentrum Jülich
Spatial restrictions can maintain the activities of concentrated protein solutions. Just why this happens has until now been poorly understood. Scientists at Forschungszentrum Jülich and University College London have now demonstrated for the first time that despite high concentration levels, proteins do not clump together in nanocavities of porous silicon dioxide, but instead behave like a fluid. The scientists discovered that crucial to this behaviour are on the one hand the interactions between the proteins and the interface, and on the other, the curvature of the nanopores.
Small-angle neutron scattering at one of the Jülich installations at the Heinz Meier-Leibnitz Zentrum in Garching has enabled the researchers to directly identify the arrangement of the proteins tested, myoglobin and lysozyme, through the nanostructured materials. In doing so, the researchers showed that the method enables connections between the characteristics of the pores, the arrangement of the proteins and their activity to be revealed. The knowledge gained can be used for the development of new and better bioinspired applications in biotechnology, medicine and catalytic processes.
Original publication
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.