First neuroblastoma patient successfully dosed with innovative CAR therapy utilizing natural killer T cells (CAR-NKT)

24-Sep-2018 - United Kingdom

Cell Medica announces the treatment of the first patient world-wide to receive CMD-501, an autologous CAR-NKT therapy targeting pediatric neuroblastoma. This is the first time an engineered NKT cell therapy has been used in humans. Cell Medica is a clinical-stage biopharmaceutical company that is transforming the treatment of solid and hematological cancer by developing the next generation of CAR therapies.

This open-label Phase 1 study, GINAKIT2, is being carried out in collaboration with both Baylor College of Medicine (BCM) and Texas Children’s Hospital.

Dr. Andras Heczey, Principal Investigator, Assistant Professor, Pediatrics-Oncology at Baylor College of Medicine and Physician-Scientist, Texas Children’s Cancer Center commented: “Dosing the first patient with this novel CAR-NKT therapy is an important milestone for all pediatric patients with neuroblastoma. CAR-NKTs may offer an exciting new therapeutic option for these patients and potentially for others with solid and hematological cancers.  I am extremely grateful to the patients and families participating in this ground-breaking study.”

CMD-501 is based on Cell Medica’s novel CAR-NKT platform, a next-generation technology of engineered immune cells with enhanced functions for the treatment of hematological and solid tumors, utilizing the unique properties of NKT cells, a specialized type of innate lymphocytes, sharing properties of T and NK cells. CMD-501 is the initial study from Cell Medica’s CAR-NKT pipeline and utilizes an autologous approach. The patient’s own NKT cells are genetically engineered with a CAR targeting GD2, a molecule expressed on the surface of nearly all neuroblastoma cells. In collaboration with its partners at BCM and Texas Children’s, Cell Medica designed this CAR-NKT cell therapy to also secrete the cytokine IL-15, which has been shown in pre-clinical studies to increase the persistence of CAR-NKT cells and improve their efficacy within the immunosuppressive tumor microenvironment.

Other news from the department research and development

More news from our other portals

All FT-IR spectrometer manufacturers at a glance