How herpesviruses escape from the immune system
When herpesviruses infect a cell and multiply, they can be detected by the T cells of the immune system because the infected cell will show certain proteins on its surface, the so-called MHC-I proteins. These proteins act as a warning signal: they bind other proteins on the surface of the T cell and activate it to destroy the virus-infected cell. The herpesvirus MCMV blocks this warning signal: it contains a factor, known as gp40, that prevents the transport of the MHC-I proteins to the cell surface. The virus evades the immune response, and so gp40 belongs to the class of the immuno-evasins.
The Springer group, supported by DFG and the Tönjes Vagt Foundation of Bremen, have now gathered decisive insights into how the gp40 immunoevasin achieves its function. Springer describes the processes with a simple analogy: "Imagine that gp40 has two hands. With one hand, It holds on to a fixed point within the cell, and with the other hand, it grabs the MHC-I protein. Of course now, the MHC-I protein can no longer make its way to the cell surface." Springer’s PhD student, Venkat Raman Ramnarayan, has managed to identify this fixed point in the cell interior, and it turned out to be a cellular protein called TMED10, with which the Springer Lab was already familiar. "We were very well equipped to investigate the interaction between gp40 and TMED10", says Springer. "And now, we also know how the MCMV virus can escape from the immune response."
The results are not directly useful for patients, yet they do lay the foundation for future therapies which can strengthen and support the immune response against viral infections.
Original publication
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.