Less chewing the cud, more greening the fuel
Plant biomass contains considerable calorific value but most of it makes up robust cell walls, an unappetising evolutionary advantage that helped grasses to survive foragers and prosper for more than 60 million years.

Free-Photos; pixabay.com; CC0
The trouble is that this robustness still makes them less digestible in the rumen of cows and sheep and difficult to process in bioenergy refineries for ethanol fuel.
But now a multinational team of researchers, from the UK, Brazil and the US, has pinpointed a gene involved in the stiffening of cell walls whose suppression increased the release of sugars by up to 60%.
"The impact is potentially global as every country uses grass crops to feed animals and several biofuel plants around the world use this feedstock," says Rowan Mitchell, a plant biologist at Rothamsted Research and the team's co-leader.
"In Brazil alone, the potential markets for this technology were valued last year at R$1300M ($400M) for biofuels and R$61M for forage cattle," says Hugo Molinari, Principal Investigator of the Laboratory of Genetics and Biotechnology at Embrapa Agroenergy, part of the Brazilian Agricultural Research Corporation (Embrapa) and the team's other co-leader.
Billions of tonnes of biomass from grass crops are produced every year, notes Mitchell, and a key trait is its digestibility, which determines how economic it is to produce biofuels and how nutritious it is for animals. Increased cell wall stiffening, or feruloylation, reduces digestibility.
"We identified grass-specific genes as candidates for controlling cell wall feruloylation 10 years ago, but it has proved very difficult to demonstrate this role although many labs have tried," says Mitchell. "We now provide the first strong evidence for one of these genes."
In the team's genetically modified plants, a transgene suppresses the endogenous gene responsible for feruloylation to around 20% of its normal activity. In this way, the biomass produced is less feruloylated than it would otherwise be in an unmodified plant.
"The suppression has no obvious effect on the plant's biomass production or on the appearance of the transgenic plants with lower feruloylation," notes Mitchell. "Scientifically, we now want to find out how the gene mediates feruloylation. In that way, we can see if we can make the process even more efficient."
The findings are undoubtedly a boon in Brazil, where a burgeoning bioenergy industry produces ethanol from the non-food leftovers of other grass crops, such as maize stover and sugarcane residues, and from sugar cane grown as a dedicated energy crop. Increased efficiency of bioethanol production will help it to replace fossil fuel and reduce greenhouse gas emissions.
"Economically and environmentally, our livestock industry will benefit from more efficient foraging and our biofuels industry will benefit from biomass that needs fewer artificial enzymes to break it down during the hydrolysis process," notes Molinari.
For John Ralph, co-author and field pioneer, the discovery has been hard won and is long overdue. "Various research groups 'had the feruloylation protein/gene imminently', and that was some 20 years ago," notes the Professor of Biochemistry at the University of Wisconsin-Madison and at the US Department of Energy's Great Lakes Bioenergy Research Center.
"Our group has been interested, since the early 1990s, in ferulate cross-linking in plant cell walls and developed the NMR methods that were useful in the characterisation here," notes Ralph. "This has been a tough one to discover."
Original publication
Wagner R. de Souza et al.; "Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility"; New Phytol.; 2018
Most read news
Original publication
Wagner R. de Souza et al.; "Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility"; New Phytol.; 2018
Topics
Organizations
Other news from the department science

Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
More news from our other portals
Last viewed contents

First 3-D structure of DHHC enzymes reported
Millipore Forms Collaboration with Agilent Technologies to Expand Capabilities in Epigenetics Research Market

Obesity treatment could offer dramatic weight loss without surgery or nausea

Dr. Roland Durner becomes new CEO of Bioengineering AG

Sustainable scents from the mountain of the gods - ETH Zurich chemist Michailidou could see herself founding her own start-up: “That would be a dream come true”
Telormedix’ TMX-101 Commences Clinical Trial for Bladder Cancer
