First parasitic nematodes reported in biofuel crops
"Nematodes are a part of our soil systems," Mekete said. "However, when it comes to potential crops for biofuel production, we simply don't know which nematodes are present in these crops and at what levels."
The 2008-09 nematode survey included samples from 37 Miscanthus and 48 switchgrass plots in Illinois, Georgia, Iowa, Kentucky, South Dakota and Tennessee.
All sample sites had at least two nematode species that have been reported to reduce biomass in most monocotyledon hosts. The damaging population thresholds for these nematodes to Miscanthus and switchgrass are still unknown. However, the population densities encountered may present a potential risk to biofuels production when compared with threshold densities reported on other monocotyledon hosts, Mekete said.
Researchers discovered lesion (Pratylenchus), dagger (Xiphinema), needle (Longidorus), lance (Hoplolaimus), stunt (Tylenchorhynchus), spiral (Helicotylenchus), and ring (Criconema) in Miscanthus and switchgrass. These nematodes have previously been reported to cause damage to several plant species such as corn, bent grass, switchgrass and turf grasses.
"The high levels of nematodes found in our survey and the damage symptoms observed in infected roots suggest parasitism may contribute to the decline of biomass production," Mekete said.
Needle nematodes, discovered at high levels in the sandy soils of Havana, Ill., and Georgia, caused visible stunting of lateral roots and destruction of the fibrous root system. Mekete's team hopes to do further research in Havana to study the interaction between this nematode and biomass yield. Researchers are now studying damage thresholds of lesion, root-knot and needle nematodes to Miscanthus and switchgrass under greenhouse conditions. Future studies will include host suitability and population dynamics of the most prevalent nematodes associated with these perennial grasses.
In addition to discovering information on the distribution, presence, abundance and identification of these nematodes, researchers also developed species-specific DNA tests to help identify nematodes so future research can focus on developing control tactics.
Most read news
Other news from the department science
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.