Computer simulation of protein malfunction related to Alzheimer's disease
The research proposes a three-dimensional model which simulates the interaction between the peptide Amyloid beta and the different forms of Apolipoprotein E (ApoE) and offers a first molecular base for the comprehension of this phenomenon. Three possible ApoE forms exist in humans: ApoE2, ApoE3 and ApoE4. ApoE3 is the most common form, while ApoE4 is very closely linked to Alzheimer's disease.
The project was carried out by five researchers, including Jean-Didier Maréchal and Àlex Perálvarez, lecturers at the UAB Departments of Chemistry and of Biochemistry and Molecular Biology (Centre for Biophysics Studies). Given the difficulty in carrying out in vitro experiments with the peptide Amyloid beta, researchers decided to create a computer simulation to establish the first approximation of the molecular mechanisms which relate it to ApoE4.
The developed model structurally reaffirms the experimental observations which link ApoE4 to this pathology. Researchers have observed that this protein tends to lose its functional structure in presence of the peptide Amyloid beta; this however does not occur with the ApoE2 and ApoE3 forms. According to researchers, these differences are due to subtle divergences between the structures of each form and would explain the different responses of carriers of forms 3 and 4 in the presence of Amyloid beta molecules.
The loss of the structure reveals the possibility of new explorations aimed at better understanding and fighting against Alzheimer's disease. The following stage of the study will consist in experimentally characterising this interaction, which is an essential aspect in the design of future therapies. Researchers also highlight that this project has made even more obvious the need for computer tools in all fields of research and of the new possibilities they represent in improving the study of complex molecular systems.
Original publication: Luo J, Maréchal JD, Wärmländer S, Gräslund A, Perálvarez-Marín A.; "In silico analysis of the apolipoprotein e and the amyloid Beta Peptide interaction: misfolding induced by frustration of the salt bridge network."; PLoS Comput Biol. 2010.
Most read news
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.