Discovery provides new drug targets for malaria cure
The study examined transporter proteins which are known to move compounds around the cell. The genes for these proteins are present in plants as well as the malaria parasite Plasmodium falciparum (known as clt and PfCRT respectively), so researchers used the model plant Arabidopsis to reveal that these proteins normally transport glutathione, an antioxidant which protects the cell from stresses. In the malaria parasite (a single cell organism), this type of transporter protein has mutated so that it no longer functions normally, enabling it to remove the drug chloroquine from its cell and survive.
The work was led by Dr Spencer Maughan who began researching these genes in Prof. Chris Cobbett's lab in the Department of Genetics at the University of Melbourne and involved an international team from the Universities of Melbourne, Cambridge (UK), Heidelberg (Germany), Liverpool (UK) and Rothamsted Research (UK). It will be published in PNAS.
Most read news
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.