Research shows power of FRET-based approach for distinguishing among distinct states of proteins
The investigators created a large panel of novel mouse GAT1 transporters tagged with cyan or yellow fluorescent proteins (CFP and YFP) and optimized their expression in neuroblastoma cells. They determined the trafficking, subcellular localization, and oligomerization state of mGAT1 and correlated these features with transporter function.
One finding is that individual components of the FRET amplitude distribution reveal GAT1 dimers, high-order oligomers (likely tetramers), and oligomers associated via PDZ-mediated interactions with the actin cytoskeleton. Secondly, these details of the FRET amplitude distribution correlate with transporter function. Finally, the mGAT1 C-terminus PDZ-interacting domain is necessary for anchoring functional transporters to the actin cytoskeleton at the cell periphery; the corresponding FRET signal appears only in mGAT1 constructs with wild-type function. More generally, the results show the power of the FRET-based approach for distinguishing among distinct states of proteins.
Most read news
Topics
Organizations
Other news from the department science
Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.