Implant-based cancer vaccine is first to eliminate tumors in mice
New approach reprograms the mammalian immune system to attack tumors body-wide
"This work shows the power of applying engineering approaches to immunology," says David J. Mooney, the Robert P. Pinkas Family Professor of Bioengineering in Harvard's School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering. "By marrying engineering and immunology through this collaboration with Glenn Dranoff at the Dana-Farber Cancer Institute, we've taken a major step toward the design of effective cancer vaccines."
Most cancer cells easily skirt the immune system, which operates by recognizing and attacking invaders from outside the body. The approach developed by Mooney's group redirects the immune system to target tumors, and appears both more effective and less cumbersome than other cancer vaccines currently in clinical trials.
Conventional cancer vaccinations remove immune cells from the body, reprogram them to attack malignant tissues, and return them to the body. However, more than 90 percent of reinjected cells have died before having any effect in experiments. The slender implants developed by Mooney's group are 8.5 millimeters in diameter and made of an FDA-approved biodegradable polymer. Ninety percent air, the disks are highly permeable to immune cells and release cytokines, powerful recruiters of immune-system messengers called dendritic cells. These cells enter an implant's pores, where they are exposed to antigens specific to the type of tumor being targeted. The dendritic cells then report to nearby lymph nodes, where they direct the immune system's T cells to hunt down and kill tumor cells.
The technique may have powerful advantages over surgery and chemotherapy, and may also be useful in combination with existing therapies. It only targets tumor cells, avoiding collateral damage elsewhere in the body. And, much as an immune response to a bacterium or virus generates long-term resistance, researchers anticipate cancer vaccines will generate permanent and body-wide resistance against cancerous cells, providing durable protection against relapse.
Mooney says the new approach's strength lies in its ability to simultaneously regulate the two arms of the human immune system: one that destroys foreign material and one that protects tissue native to the human body. The implant-based vaccine recruits several types of dendritic cells that direct destructive immune responses, creating an especially potent anti-tumor response.
Most read news
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.