Gene called flower missing link in vesicle uptake in neurons
Calcium influx into the synapses through tiny pores or channels in the membrane initiates the release of vesicles via exocytosis. Since neurons can fire impulses as frequently as 500 times a second, the calcium that flows into the synapses must be removed very rapidly to keep the process going.
After exocytosis, the vesicle membranes must be retrieved, and this process is also stimulated by an increase in calcium in the synapses, but the channel that mediates this influx was unknown until Dr. Hugo Bellen, a professor of molecular and human genetics at BCM, and his colleagues identified it in an elegant series of experiments. Interestingly, this channel is present in the vesicles. Hence, the vesicles carry the means to activate their own re-uptake in the form of a protein that functions as a calcium channel.
A genetic screen identified a novel gene called flower, and Chi-Kuang Yao, a postdoctoral fellow in Bellen's laboratory, mapped the gene and showed that the corresponding protein is present in the membrane of synaptic vesicles. He then showed that fruit flies lacking this gene were less able to endocytose vesicles.
Direct experiments involved purifying the Flower protein, putting it into liposomes or artificial vesicles and showing that several copies of the protein can aggregate together and form a channel in membranes. When calcium was introduced into this system, it could enter the vesicle, showing that the protein allows calcium entry.
"The vesicle carries its own channel to promote endocytosis," said Bellen. "It is a simple regulatory system. The mechanism links exocytosis and endocytosis."
Topics
Organizations
Other news from the department science
These products might interest you
Hydrosart® Ultrafilter by Sartorius
Efficient ultrafiltration for biotech and pharma
Maximum flow rates and minimum protein loss with Hydrosart® membranes
Hydrosart® Microfilter by Sartorius
Hydrophilic microfilters for bioprocesses
Minimal protein adsorption and high flow rates
Sartobind® Rapid A by Sartorius
Efficient chromatography with disposable membranes
Increase productivity and reduce costs with fast cycle times
Sartopore® Platinum by Sartorius
Efficient filtration with minimal protein adsorption
Reduces rinsing volume by 95 % and offers 1 m² filtration area per 10"
Polyethersulfone Ultrafilter by Sartorius
Reliable filtration with PESU membranes
Perfect for biotechnology and pharmaceuticals, withstands sterilisation and high temperatures
Polyethersulfone Microfilter by Sartorius
Biotechnological filtration made easy
Highly stable 0.1 µm PESU membranes for maximum efficiency
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.