To use all functions of this page, please activate cookies in your browser.
my.bionity.com
With an accout for my.bionity.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
SarcomereA sarcomere is the basic unit of a muscle's cross-striated myofibril. Sarcomeres are multi-protein complexes composed of three different filament systems.
A muscle cell, from a biceps, may contain 100,000 sarcomeres. The myofibrils of smooth muscle cells are not arranged into sarcomeres. Additional recommended knowledge
BandsThe sarcomeres are what give skeletal and cardiac muscles their striated appearance.
The relationship between the proteins and the regions of the sarcomere are as follows:
ContractionUpon muscle contraction, the A-bands maintain their length (1.6 micrometer in mammalian skeletal muscle) whereas the I-bands shorten. The A-band, I-band and Z-line are the only components visible at the light-microscope level. The protein tropomyosin covers the myosin binding sites of the actin molecules in the muscle cell. To allow the muscle cell to contract, tropomyosin must be moved to uncover the binding sites on the actin. Calcium ions bind with troponin molecules (which are dispersed throughout the tropomyosin protein) and alter the structure of the tropomyosin, forcing it to reveal the cross bridge binding site on the actin. The concentration of calcium within muscle cells is controlled by the sarcoplasmic reticulum, a unique form of endoplasmic reticulum. Muscle contraction ends when calcium ions are pumped back out of the sarcomere. Skeletal muscle only contracts when an impulse is received from a motor neuron. During stimulation of the muscle cell, the motor neuron releases the neurotransmitter acetylcholine which travels across the neuromuscular junction (the synapse between the terminal bouton of the neuron and the muscle cell). The action potential then travels along T (transverse) tubules until it reaches the sarcoplasmic reticulum; the action potential from the motor neuron changes the permeability of the sarcoplasmic reticulum, allowing the flow of calcium ions into the sarcomere. The outflow of calcium allows the myosin heads access to the actin cross bridge binding sites, permitting muscle contraction. RestAt rest, the myosin head is bound to an ATP molecule in a low-energy configuration and is unable to access the cross bridge binding sites on the actin. However, the myosin head can hydrolyze ATP into ADP and an inorganic phosphate ion. A portion of the energy released in this reaction changes the shape of the myosin head and promotes it to a high-energy configuration. Through the process of binding to the actin, the myosin head releases ADP and inorganic phosphate ion, changing its configuration back to one of low energy. The myosin remains attached to actin in a state known as Rigor, until a new ATP binds the myosin head. This binding of ATP to myosin releases the actin by cross-bridge dissociation. The ATP associated myosin is ready for another cycle, beginning with hydrolysis of the ATP. StorageMost muscle cells only store enough ATP for a small number of muscle contractions. While muscle cells also store glycogen, most of the energy required for contraction is derived from phosphagens. One such phosphagen is creatine phosphate, which is used to provide ADP with a phosphate group for ATP synthesis in vertebrates.
Categories: Cell anatomy | Cell movement | Muscular system |
|||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Sarcomere". A list of authors is available in Wikipedia. |