To use all functions of this page, please activate cookies in your browser.
my.bionity.com
With an accout for my.bionity.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
NucleaseA nuclease is an enzyme capable of cleaving the phosphodiester bonds between the nucleotide subunits of nucleic acids. Older papers may use terms such as "polynucleotidase" or "nucleodepolymerase"[1]. Additional recommended knowledge
IntroductionIn the late 1960s, scientists Stewart Linn and Werner Arber isolated examples of the two types of enzymes responsible for phage growth restriction in Escherichia coli (E. coli) bacteria [2][3]. One of these enzymes added a methyl group to the DNA, generating methylated DNA, while the other cleaved unmethylated DNA at a wide variety of locations along the length of the molecule. The first type of enzyme was called a "methylase" and the other a "restriction nuclease". These enzymatic tools were important to scientists who were gathering the tools needed to "cut and paste" DNA molecules. What was then needed was a tool that would cut DNA at specific sites, rather than at random sites along the length of the molecule, so that scientists could cut DNA molecules in a predictable and reproducible way. Site-specific nucleaseThis important development came when H.O. Smith, K.W. Wilcox, and T.J. Kelley, working at Johns Hopkins University in 1968, isolated and characterized the first restriction nuclease whose functioning depended on a specific DNA nucleotide sequence. Working with Haemophilus influenzae bacteria, this group isolated an enzyme, called HindII, that always cut DNA molecules at a particular point within a specific sequence of six base pairs. This sequence is: 5' G T ( pyrimidine: T or C) ( purine: A or G) A C 3' 3' C A ( purine: A or G) ( pyrimidine: T or C) T G 5' They found that the HindII enzyme always cuts directly in the center of this sequence. Wherever this particular sequence of six base pairs occurs unmodified in a DNA molecule, HindII will cleave both DNA backbones between the 3rd and 4th base pairs of the sequence. Moreover, HindII will only cleave a DNA molecule at this particular site. For this reason, this specific base sequence is known as the "recognition sequence" for HindII. HindII is only one example of the class of enzymes known as restriction nucleases. In fact, more than 900 restriction enzymes, some sequence specific and some not, have been isolated from over 230 strains of bacteria since the initial discovery of HindII. These restriction enzymes generally have names that reflect their origin--The first letter of the name comes from the genus and the second two letters come from the species of the prokaryotic cell from which they were isolated. For example EcoRI comes from Escherichia coli RY13 bacteria, while HindII comes from Haemophilus influenzae strain Rd. Numbers following the nuclease names indicate the order in which the enzymes were isolated from single strains of bacteria. Nucleases are further described by addition of the prefix "endo" or "exo" to the name: The term "endonuclease" applies to nucleases that break nucleic acid chains somewhere in the interior, rather than at the ends, of the molecule. A nuclease that functions by removing nucleotides from the ends of the DNA molecule is called an exonuclease. Endonucleases and DNA fragmentsA restriction endonuclease functions by "scanning" the length of a DNA molecule. Once it encounters its particular specific recognition sequence, it will bond to the DNA molecule and makes one cut in each of the two sugar-phosphate backbones of the double helix. The positions of these two cuts, both in relation to each other, and to the recognition sequence itself, are determined by the identity of the restriction endonuclease used to cleave the molecule in the first place. Different endonucleases yield different sets of cuts, but one endonuclease will always cut a particular base sequence the same way, no matter what DNA molecule it is acting on. Once the cuts have been made, the DNA molecule will break into fragments. Endonucleases and sticky endsNot all restriction endonucleases cut symmetrically and leave blunt ends like HindII described above. Many endonucleases cleave the DNA backbones in positions that are not directly opposite each other. For example, the nuclease EcoRI has the following recognition sequence:
5' G A A T T C 3'
When the enzyme encounters this sequence, it cleaves each backbone between the G and the closest A base residues. Once the cuts have been made, the resulting fragments are held together only by the relatively weak hydrogen bonds that hold the complementary bases to each other. The weakness of these bonds allows the DNA fragments to separate from one each other. Each resulting fragment has a protruding 5' end composed of unpaired bases. Other enzymes create cuts in the DNA backbone which result in protruding 3' ends. Protruding ends--both 3' and 5'-- are sometimes called "sticky ends" because they tend to bond with complementary sequences of bases. In other words, if an unpaired length of bases (5' A A T T 3') encounters another unpaired length with the sequence (3' T T A A 5') they will bond to each other--they are "sticky" for each other. Ligase enzyme is then used to join the phosphate backbones of the two molecules. The cellular origin, or even the species origin, of the sticky ends does not affect their stickiness. Any pair of complementary sequences will tend to bond, even if one of the sequences comes from a length of human DNA, and the other comes from a length of bacterial DNA. In fact, it is this quality of stickiness that allows production of recombinant DNA molecules, molecules which are composed of DNA from different sources, and which has given birth to an industry! Common examples
|
|||||||||||||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Nuclease". A list of authors is available in Wikipedia. |