My watch list
my.bionity.com  
Login  

Radioactive contamination




Pollution
v  d  e
Air pollution
Acid rain • Air Quality Index • Atmospheric dispersion modeling • Chlorofluorocarbon • Global dimming • Global warming • Haze • Indoor air quality • Ozone depletion • Particulate • Smog
Water pollution
Eutrophication • Hypoxia • Marine pollution • Ocean acidification • Oil spill • Ship pollution • Surface runoff • Thermal pollution • Wastewater • Waterborne diseases • Water quality • Water stagnation
Soil contamination
BioremediationHerbicidePesticide • Soil Guideline Values (SGVs)
Radioactive contamination
Actinides in the environment • Environmental radioactivityFission productNuclear falloutPlutonium in the environmentRadiation poisoning • Radium in the environment • Uranium in the environment
Other types of pollution
Invasive species • Light pollution • Noise pollution • Radio spectrum pollution • Visual pollution
Inter-government treaties
Montreal Protocol • Nitrogen Oxide Protocol • Kyoto Protocol • CLRTAP
Major organizations
DEFRA • EPA • Global Atmosphere Watch • Greenpeace • National Ambient Air Quality Standards
Related topics
Environmental Science • Natural environment

  Radioactive contamination is the uncontrolled distribution of radioactive material in a given environment. The amount of radioactive material released in an accident is called the source term.

Contents

Sources of contamination

Radioactive contamination is typically the result of a spill or accident during the production or use of radionuclides (radioisotopes)(An unstable nucleus which has excessive energy).Contamination may occur from radioactive gases, liquids or particles. For example, if a radionuclide used in nuclear medicine is accidentally spilled, the material could be spread by people as they walk around. Radioactive contamination may also be an inevitable result of certain processes, such as the release of radioactive xenon in nuclear fuel reprocessing. In cases that radioactive material cannot be contained, it may be diluted to safe concentrations. Nuclear fallout is the distribution of radioactive contamination by a nuclear explosion. For a discussion of environmental contamination by alpha emitters please see actinides in the environment.

Containment is what differentiates radioactive material from radioactive contamination. Therefore, radioactive material in sealed and designated containers is not properly referred to as contamination, although the units of measurement might be the same.

Measurement

Radioactive contamination may exist on surfaces or in volumes of material or air. In a nuclear power plant, detection and measurement of radioactivity and contamination is often the job of a Certified Health Physicist.

Surface contamination

Surface contamination is usually expressed in units of radioactivity per unit of area. For SI, this is becquerels per square meter (or Bq/m²). Other units such as picoCuries per 100 cm² or disintegrations per minute per square centimeter (1 dpm/cm² = 166 2/3 Bq/m²) may be used. Surface contamination may either be fixed or removable. In the case of fixed contamination, the radioactive material cannot by definition be spread, but it is still measurable.

Hazards

In practice there is no such thing as zero radioactivity. Not only is the entire world constantly bombarded by cosmic rays, but every living creature on earth contains significant quantities of carbon-14 and most (including humans) contain significant quantities of potassium-40. These tiny levels of radiation are not any more harmful than sunlight, but just as excessive quantities of sunlight can be dangerous, so too can excessive levels of radiation.

Low level contamination

The hazards to people and the environment from radioactive contamination depend on the nature of the radioactive contaminant, the level of contamination, and the extent of the spread of contamination. Low levels of radioactive contamination pose little risk, but can still be detected by radiation instrumentation. In the case of low-level contamination by isotopes with a short half-life, the best course of action may be to simply allow the material to naturally decay. Longer-lived isotopes should be cleaned up and properly disposed off.

 

High level contamination

High levels of contamination may pose major risks to people and the environment. People can be exposed to potentially lethal radiation levels, both externally and internally, from the spread of contamination following an accident (or a deliberate initiation) involving large quantities of radioactive material. The biological effects of external exposure to radioactive contamination are generally the same as those from an external radiation source not involving radioactive materials, such as x-ray machines, and are dependent on the absorbed dose.

Biological effects

See also: Radiation poisoning

The biological effects of internally deposited radionuclides depend greatly on the activity and the biodistribution and removal rates of the radionuclide, which in turn depends on its chemical form. The biological effects may also depend on the chemical toxicity of the deposited material, independent of its radioactivity. Some radionuclides may be generally distributed throughout the body and rapidly removed, as is the case with tritiated water. Some radionuclides may target specific organs and have much lower removal rates. For instance, the thyroid gland takes up a large percentage of any iodine that enters the body. If large quantities of radioactive iodine are inhaled or ingested, the thyroid may be impaired or destroyed, while other tissues are affected to a lesser extent. Radioactive iodine is a common fission product; it was a major component of the radiation released from the Chernobyl disaster, leading to many cases of pediatric thyroid cancer and hypothyroidism. On the other hand, radioactive iodine is used in the diagnosis and treatment of many diseases of the thyroid precisely because of the thyroid's selective uptake of iodine.

Means of contamination

Radioactive contamination can enter the body through ingestion, inhalation, absorption, or injection. For this reason, it is important to use personal protective equipment when working with radioactive materials. Radioactive contamination may also be ingested as the result of eating contaminated plants and animals or drinking contaminated water or milk from exposed animals. Following a major contamination incident, all potential pathways of internal exposure should be considered.

See also

 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Radioactive_contamination". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE