To use all functions of this page, please activate cookies in your browser.
my.bionity.com
With an accout for my.bionity.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
P elementA P element is a transposon that is present in the fruit fly Drosophila melanogaster and is used widely for mutagenesis and the creation of genetically modified flies used for genetic research. The P element causes a phenotype known as hybrid dysgenesis. They seem to have first appeared in the species only in the middle of the twentieth century. Within 50 years, they have spread through every wild population of the species, so that only older laboratory stocks lack them. Additional recommended knowledge
CharacteristicsThe P element is a class II transposon, which means that its movement within the genome is made possible by a transposase. The complete element is 2907 bp and is autonomous because it encodes a functional transposase; non-autonomous P elements which lack a functional transposase gene due to mutation also exist. Non-autonomous P elements can still move within the genome if there are autonomous elements to produce transposase. The P element can be identified by its terminal 31-bp inverted repeats, and the 8 bp direct repeats its movement into and out of DNA sequence produces. Hybrid dysgenesisHybrid dysgenesis refers to the high rate of mutation in germ line cells of Drosophila strains resulting from a cross of males with autonomous P elements (P Strain/P cytotype) and females that lack P elements (M Strain/M cytotype). The hybrid dysgenesis syndrome is marked by temperature-dependent sterility, elevated rates of mutation, chromosome rearrangement and recombination. This is caused by the transposition of P elements within the germ-line cells of offspring of P strain males with M strain females. This transposition only occurs in germ-line cells because a splicing event needed to make transposase mRNA does not occur in somatic cells. The reason that hybrid dysgenesis takes place when crossing P strain males with M strain females and not when crossing P strain females (females with autonomous P elements) and M strain males is that the eggs of P strain females contain high amounts of repressor protein that prevents transcription of the transposase gene. The eggs of M strain mothers, on the other hand, do not contain the repressor protein, allowing for transposition of P elements from the sperm of fathers. P element in molecular biologyThe P element has found wide use in Drosophila research as a mutagen. The mutagenesis system typically uses an autonomous but immobile element, and a mobile nonautonomous element. Flies from subsequent generations can then be screened by phenotype or PCR. Naturally-occurring P elements contain:
Transposase is an enzyme that regulates and catalyzes the excision of a P element from the host DNA, cutting at two recognition sites, and then reinserts randomly. It is the random insertion that may interfere with existing genes, or carry an additional gene, that can be used for genetic research. To use this as a useful and controllable genetic tool, the two parts of the P element must be separated to prevent uncontrolled transposition. The normal genetic tools are therefore:
P Plasmids always contain:
And may contain:
Methods of usageThere are two main ways to utilise these tools: Fly transformation
It is important to note that the inserted gene may have damaged the function of one of the host's genes. Several lines of flies are required so comparison can take place and ensure that no additional genes have been knocked out. Insertional mutagenesis
Possible mutations:
Enhancer trappingThe hijack of an enhancer from another gene allows the analysis of the function of that enhancer. This, especially if the reporter gene is for a fluorescent protein, can be used to help map expression of the mutated gene through the organism, and is a very powerful tool. Other usage of P elementsThese methods are referred to as reverse genetics. Secondary mobilisationIf there is an old P element near the gene of interest (with a broken transposase) you can remobilise by microinjection of the embryo with coding for transposase or transposase itself. The P element will often transpose within a few kilobases of the original location, hopefully affecting your gene of interest as for 'Insertional Mutagenisis'. Analysis of mutagenesis productsOnce the function of the mutated proten has been determined it is possible to sequence/purify/clone the regions flanking the insertion by the following methods: Inverse PCRMain article: Inverse PCR
The process of cutting, self ligation and re cutting allows the amplification of the flanking regions of DNA without knowing the sequence. The point at which the ligation occurred can be seen by identifying the cut site of [enzyme 1]. Plasmid rescue
References
Categories: Molecular biology | Mobile genetic elements |
|
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "P_element". A list of authors is available in Wikipedia. |