To use all functions of this page, please activate cookies in your browser.
my.bionity.com
With an accout for my.bionity.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Fungal prionsFungal prions have been investigated, leading to a deeper understanding of disease-forming mammalian prions. Prion-like proteins are found naturally in some plants and non-mammalian animals. Some of these are not associated with any disease state and may possibly even have a useful role . Because of this, scientists reasoned that such proteins could give some sort of evolutionary advantage to their host. This was suggested to be the case in a species of fungus, Podospora anserina. Genetically compatible colonies of this fungus can merge together and share cellular contents such as nutrients and cytoplasm. A natural system of protective "incompatibility" proteins exists to prevent promiscuous sharing between unrelated colonies. One such protein, called HET-S, adopts a prion-like form in order to function properly . The prion form of HET-S spreads rapidly throughout the cellular network of a colony and can convert the non-prion form of the protein to a prion state after compatible colonies have merged . However, when an incompatible colony tries to merge with a prion-containing colony, the prion causes the "invader" cells to die, ensuring that only related colonies obtain the benefit of sharing resources. Additional recommended knowledge
Sup35p & Ure2pIn 1965, Brian Cox, a geneticist working with the yeast Saccharomyces cerevisiae, described a genetic trait (termed PSI+) with an unusual pattern of inheritance. The initial discovery of PSI+ was made in a strain auxotrophic for the adenine due to a nonsense mutation [1] Despite many years of effort, Cox could not identify a conventional mutation that was responsible for the PSI+ trait. In 1994, yeast geneticist Reed Wickner correctly hypothesized that PSI+ as well as another mysterious heritable trait, URE3, resulted from prion forms of certain normal cellular proteins heat shock proteins (which help other proteins fold properly) were intimately tied to the inheritance and transmission of PSI+ and many other yeast prions. Since then, researchers have unravelled how the proteins that code for PSI+ and URE3 can convert between prion and non-prion forms, as well as the consequences of having intracellular prions. When exposed to certain adverse conditions, PSI+ cells actually fare better than their prion-free siblings ; this finding suggests that, in some proteins, the ability to adopt a prion form may result from positive evolutionary selection . It has been speculated that the ability to convert between prion infected and prion-free forms enables yeast to quickly and reversibly adapt in variable environments. Nevertheless, Wickner maintains that URE3 and PSI+ are diseases . . It was soon noticed thatFurther investigation found that PSI+ is the misfolded form of Sup35, which is an important factor for translation termination during protein synthesis [2]. It is believed that [PSI+] causes suppression of nonsense mutations by sequestering functional Sup35 in non-functional aggregates, thereby allowing stop codon readthrough. [PIN+], in turn, is the misfolded form of the protein Rnq1. However, the normal function of this protein is unknown to date. It is of note that for the induction of most variants of [PSI+], the presence of [PIN+] is required. Though reasons for this are poorly understood, it is suggested that [PIN+] aggregates may act as “seeds” for the polymerization of [PSI+] [3]. Two modified versions of Sup35 have been created that can induce PSI+ in the absence of [PIN+] when overexpressed. One version was created by digestion of the gene with BalI, which results in a protein consisting of only the M and N portions of Sup35 [4]. The other is a fusion of Sup35NM with HPR, a human membrane receptor protein. Laboratories commonly identify [PSI+] by growth of a strain auxotrophic for adenine on media lacking adenine, similar to that used by Cox et al. These strains cannot synthesize adenine due to a nonsense mutation in one of the enzymes involved in biosynthetic pathway. When the strain is grown on yeast-extract/dextrose/peptone media (YPD), the blocked pathway results in buildup of a red-colored intermediate compound, which is exported from the cell due to its toxicity. Hence, color is an alternative method of identifying [PSI+] -- [PSI+] strains are white or pinkish in color, and [psi-] strains are red. A third method of identifying [PSI+] is by the presence of Sup35 in the pelleted fraction of cellular lysate. Classification
As of 2003, the following proteins in Saccharomyces cerevisiae had been identified or postulated as prions:
References
See also
|
|||||||||||||||||||||||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Fungal_prions". A list of authors is available in Wikipedia. |