My watch list
my.bionity.com  
Login  

Myxobacteria



Myxobacteria
Scientific classification
Kingdom: Bacteria
Phylum: Proteobacteria
Class: Delta Proteobacteria
Order: Myxococcales
Families & Genera

Archangiaceae
   Archangium
Cystobacteraceae
   Cystobacter
   Melittangium
   Stigmatella
Myxoccaceae
   Myxococcus[1]
   Angiococcus
Polyangiaceae
   Chondromyces
   Nannocystis
   Polyangium

The myxobacteria ("slime bacteria") are a group of bacteria that predominantly live in the soil. The myxobacteria have very large genomes, relative to other bacteria, e.g. 9-10 million nucleotides. Polyangium cellulosum has the largest known (as of 2003) bacterial genome, at 12.2 million nucleotides. Myxobacteria are included among the proteobacteria, a large group of Gram-negative forms.

Myxobacteria can move actively by gliding. They typically travel in swarms (also known as wolf packs), containing many cells kept together by intercellular molecular signals. This close concentration of cells may be necessary to provide a high concentration of extracellular enzymes used to digest food. Myxobacteria produce a number of biomedically and industrially useful chemicals, such as antibiotics, and export those chemicals outside of the cell.[1]

Life cycle

When nutrients are scarce, myxobacterial cells aggregate into fruiting bodies, a process long-thought to be mediated by chemotaxis but now considered to be a function of a form of contact-mediated signaling.[2],[3] These fruiting bodies can take different shapes and colors, depending on the species. Within the fruiting bodies, cells begin as rod-shaped vegetative cells, and develop into rounded myxospores with thick cell walls. These myxospores, analogous to spores in other organisms, are meant to survive until nutrients are more plentiful. The fruiting process is thought to benefit myxobacteria by ensuring that cell growth is resumed with a group (swarm) of myxobacteria, rather than as isolated cells. Similar life cycles have developed among certain amoebae, called cellular slime moulds.

Clinical use

Metabolites secreted by the Myxobacteria Sorangium cellulosum known as epothilones have been noted to have antineoplastic activity. This has led to the development of analogs which mimic its activity. One such analog, known as Ixabepilone has recently undergone clinical trial in the treatment of metastatic breast cancer and is currently under new drug application review by the US FDA. [2]

References

  1. ^ Reichenbach H (2001). "Myxobacteria, producers of novel bioactive substances". J Ind Microbiol Biotechnol 27 (3): 149-56. PubMed.
  2. ^ Kiskowski MA, Jiang Y, Alber MS (2004). "Role of streams in myxobacteria aggregate formation". Phys Biol 1 (3-4): 173-83. PubMed.
  3. ^ Sozinova O, Jiang Y, Kaiser D, Alber M (2005). "A three-dimensional model of myxobacterial aggregation by contact-mediated interactions". Proc Natl Acad Sci U S A 102 (32): 11308-12. PubMed fulltext.
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Myxobacteria". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE