To use all functions of this page, please activate cookies in your browser.
my.bionity.com
With an accout for my.bionity.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Microbial biodegradationInterest in the microbial biodegradation of pollutants has intensified in recent years as mankind strives to find sustainable ways to cleanup contaminated environments.[1] These bioremediation and biotransformation methods endeavour to harness the astonishing, naturally occurring, ability of microbial xenobiotic metabolism to degrade, transform or accumulate a huge range of compounds including hydrocarbons (e.g. oil), polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), pharmaceutical substances, radionuclides and metals. Major methodological breakthroughs in recent years have enabled detailed genomic, metagenomic, proteomic, bioinformatic and other high-throughput analyses of environmentally relevant microorganisms providing unprecedented insights into key biodegradative pathways and the ability of organisms to adapt to changing environmental conditions. The elimination of a wide range of pollutants and wastes from the environment is an absolute requirement to promote a sustainable development of our society with low environmental impact. Biological processes play a major role in the removal of contaminants and they take advantage of the astonishing catabolic versatility of microorganisms to degrade/convert such compounds. New methodological breakthroughs in sequencing, genomics, proteomics, bioinformatics and imaging are producing vast amounts of information. In the field of Environmental Microbiology, genome-based global studies open a new era providing unprecedented in silico views of metabolic and regulatory networks, as well as clues to the evolution of degradation pathways and to the molecular adaptation strategies to changing environmental conditions. Functional genomic and metagenomic approaches are increasing our understanding of the relative importance of different pathways and regulatory networks to carbon flux in particular environments and for particular compounds and they will certainly accelerate the development of bioremediation technologies and biotransformation processes. Additional recommended knowledge
Aerobic biodegradation of pollutantsThe burgeoning amount of bacterial genomic data provides unparalleled opportunities for understanding the genetic and molecular bases of the degradation of organic pollutants. Aromatic compounds are among the most recalcitrant of these pollutants and lessons can be learned from the recent genomic studies of Burkholderia xenovorans LB400 and Rhodococcus sp. strain RHA1, two of the largest bacterial genomes completely sequenced to date. These studies have helped expand our understanding of bacterial catabolism, non-catabolic physiological adaptation to organic compounds, and the evolution of large bacterial genomes. First, the metabolic pathways from phylogenetically diverse isolates are very similar with respect to overall organization. Thus, as originally noted in pseudomonads, a large number of "peripheral aromatic" pathways funnel a range of natural and xenobiotic compounds into a restricted number of "central aromatic" pathways. Nevertheless, these pathways are genetically organized in genus-specific fashions, as exemplified by the b-ketoadipate and Paa pathways. Comparative genomic studies further reveal that some pathways are more widespread than initially thought. Thus, the Box and Paa pathways illustrate the prevalence of non-oxygenolytic ring-cleavage strategies in aerobic aromatic degradation processes. Functional genomic studies have been useful in establishing that even organisms harboring high numbers of homologous enzymes seem to contain few examples of true redundancy. For example, the multiplicity of ring-cleaving dioxygenases in certain rhodococcal isolates may be attributed to the cryptic aromatic catabolism of different terpenoids and steroids. Finally, analyses have indicated that recent genetic flux appears to have played a more significant role in the evolution of some large genomes, such as LB400's, than others. However, the emerging trend is that the large gene repertoires of potent pollutant degraders such as LB400 and RHA1 have evolved principally through more ancient processes. That this is true in such phylogenetically diverse species is remarkable and further suggests the ancient origin of this catabolic capacity.[2] Anaerobic biodegradation of pollutantsAnaerobic microbial mineralization of recalcitrant organic pollutants is of great environmental significance and involves intriguing novel biochemical reactions. In particular, hydrocarbons and halogenated compounds have long been doubted to be degradable in the absence of oxygen, but the isolation of hitherto unknown anaerobic hydrocarbon-degrading and reductively dehalogenating bacteria during the last decades provided ultimate proof for these processes in nature. Many novel biochemical reactions were discovered enabling the respective metabolic pathways, but progress in the molecular understanding of these bacteria was rather slow, since genetic systems are not readily applicable for most of them. However, with the increasing application of genomics in the field of environmental microbiology, a new and promising perspective is now at hand to obtain molecular insights into these new metabolic properties. Several complete genome sequences were determined during the last few years from bacteria capable of anaerobic organic pollutant degradation. The ~4.7 Mb genome of the facultative denitrifying Aromatoleum aromaticum strain EbN1 was the first to be determined for an anaerobic hydrocarbon degrader (using toluene or ethylbenzene as substrates). The genome sequence revealed about two dozen gene clusters (including several paralogs) coding for a complex catabolic network for anaerobic and aerobic degradation of aromatic compounds. The genome sequence forms the basis for current detailed studies on regulation of pathways and enzyme structures. Further genomes of anaerobic hydrocarbon degrading bacteria were recently completed for the iron-reducing species Geobacter metallireducens (accession nr. NC_007517) and the perchlorate-reducing Dechloromonas aromatica (accession nr. NC_007298), but these are not yet evaluated in formal publications. Complete genomes were also determined for bacteria capable of anaerobic degradation of halogenated hydrocarbons by halorespiration: the ~1.4 Mb genomes of Dehalococcoides ethenogenes strain 195 and Dehalococcoides sp. strain CBDB1 and the ~5.7 Mb genome of Desulfitobacterium hafniense strain Y51. Characteristic for all these bacteria is the presence of multiple paralogous genes for reductive dehalogenases, implicating a wider dehalogenating spectrum of the organisms than previously known. Moreover, genome sequences provided unprecedented insights into the evolution of reductive dehalogenation and differing strategies for niche adaptation.[3] Bioavailability, chemotaxis, and transport of pollutantsBioavailability, or the amount of a substance that is physiochemically accessible to microorganisms is a key factor in the efficient biodegradation of pollutants. Chemotaxis, or the directed movement of motile organisms towards or away from chemicals in the environment is an important physiological response that may contribute to effective catabolism of molecules in the environment. In addition, mechanisms for the intracellular accumulation of aromatic molecules via various transport mechanisms are also important.[4] Oil biodegradationPetroleum oil contains aromatic compounds that are toxic for most life forms. Episodic and chronic pollution of the environment by oil causes major ecological perturbations. Marine environments are especially vulnerable since oil spills of coastal regions and the open sea are poorly containable and mitigation is difficult. In addition to pollution through human activities, millions of tons of petroleum enter the marine environment every year from natural seepages. Despite its toxicity, a considerable fraction of petroleum oil entering marine systems is eliminated by the hydrocarbon-degrading activities of microbial communities, in particular by a remarkable recently discovered group of specialists, the so-called hydrocarbonoclastic bacteria (HCB) . Alcanivorax borkumensis was the first HCB to have its genome sequenced.[5] Analysis of waste biotreatmentSustainable development requires the promotion of environmental management and a constant search for new technologies to treat vast quantities of wastes generated by increasing anthropogenic activities. Biotreatment, the processing of wastes using living organisms, is an environmentally friendly, relatively simple and cost-effective alternative to physico-chemical clean-up options. Confined environments, such as bioreactors], have been engineered to overcome the physical, chemical and biological limiting factors of biotreatment processes in highly controlled systems. The great versatility in the design of confined environments allows the treatment of a wide range of wastes under optimized conditions. To perform a correct assessment, it is necessary to consider various microorganisms having a variety of genomes and expressed transcripts and proteins. A great number of analyses are often required. Using traditional genomic techniques, such assessments are limited and time-consuming. However, several high-throughput techniques originally developed for medical studies can be applied to assess biotreatment in confined environments.[6] Metabolic engineering and biocatalytic applicationsThe study of the fate of persistent organic chemicals in the environment has revealed a large reservoir of enzymatic reactions with a large potential in preparative organic synthesis, which has already been exploited for a number of oxygenases on pilot and even on industrial scale. Novel catalysts can be obtained from metagenomic libraries and DNA sequence based approaches. Our increasing capabilities in adapting the catalysts to specific reactions and process requirements by rational and random mutagenesis broadens the scope for application in the fine chemical industry, but also in the field of biodegradation. In many cases, these catalysts need to be exploited in whole cell bioconversions or in fermentations, calling for system-wide approaches to understanding strain physiology and metabolism and rational approaches to the engineering of whole cells as they are increasingly put forward in the area of systems biotechnology and synthetic biology.[7] See also
References
Categories: Bioremediation | Biotechnology | Microbiology |
|
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Microbial_biodegradation". A list of authors is available in Wikipedia. |