To use all functions of this page, please activate cookies in your browser.
my.bionity.com
With an accout for my.bionity.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Junk DNA
In molecular biology, "junk" DNA is a collective label for the portions of the DNA sequence of a chromosome or a genome for which no function has yet been identified. About 80-90% of the human genome has been designated as "junk", including most sequences within introns and most intergenic DNA. While much of this sequence may be an evolutionary artifact that serves no present-day purpose, some is believed to function in ways that are not currently understood. Moreover, the conservation of some junk DNA over many millions of years of evolution may imply an essential function. Some consider the "junk" label as something of a misnomer, but others consider it apposite as junk is stored away for possible new uses, rather than thrown out; others prefer the term "noncoding DNA" (although junk DNA often includes transposons that encode proteins with no clear value to their host genome). However it now appears that, although protein-coding DNA makes up barely 2% of the human genome, about 80% of the bases in the genome may be being expressed, which supports the view that the term "junk DNA" may be a misnomer.[1] Broadly, the science of functional genomics has developed widely accepted techniques to characterize protein-coding genes, RNA genes, and regulatory regions. In the genomes of most plants and animals, however, these together constitute only a small percentage of genomic DNA (less than 2% in the case of humans). The function, if any, of the remainder remains under investigation. Most of it can be identified as repetitive elements that have no known biological function for their host (although they are useful to geneticists for analyzing lineage and phylogeny). Still, a large amount of sequence in these genomes falls under no existing classification other than "junk". Overall genome size, and by extension the amount of junk DNA, appears to have little relationship to organism complexity: the genome of the unicellular Amoeba dubia has been reported to contain more than 200 times the amount of DNA in humans"[2] [3]. The pufferfish Takifugu rubripes genome is only about one tenth the size of the human genome, yet seems to have a comparable number of genes. Most of the difference appears to lie in what is now known only as junk DNA. This puzzle is known as the C-value enigma or, more conventionally, the C-value paradox[4]. Additional recommended knowledge
Hypotheses of origin and functionThere are some hypotheses, none conclusively established, from the most academic to the less expected, for how junk DNA arose and why it persists in the genome:
Evolutionary conservation of "junk" DNAComparative genomics is a promising direction in studying the function of junk DNA. Biologically functional sequences, as the theory goes, tend to undergo mutation at a slower rate than nonfunctional sequence, since mutations in these sequences are likely to be selected against. For example, the coding sequence of a human protein-coding gene is typically about 80% identical to its mouse ortholog, while their genomes as a whole are much more widely diverged. Analyzing the patterns of conservation between the genomes of different species can suggest which sequences are functional, or at least which functional sequences are shared by those species. Functional elements stand out in such analyses as having diverged less than the surrounding sequence. Comparative studies of several mammalian genomes suggest that approximately 5% of the human genome has evolved under purifying selection[13] since the divergence of the mammals. Since known functional sequence comprises less than 2% of the human genome, it appears that there may be more functional "junk" DNA in the human genome than there is known functional sequence. A surprising recent finding was the discovery of nearly 500 ultraconserved elements[14], which are shared at extraordinarily high fidelity among the available vertebrate genomes, in what had previously been designated as junk DNA. The function of these sequences is currently under intense scrutiny, and there are preliminary indications[14][15][16] that some may play a regulatory role in vertebrate development from embryo to adult. It must be noted that all present results concerning evolutionarily conserved human "junk" DNA are expressed in highly preliminary, probabilistic terms, since only a handful of related genomes are available. As more vertebrate, and especially mammalian, genomes are sequenced, scientists will develop a clearer picture of this important class of sequence. However, it is always possible, though highly unlikely, that there are significant quantities of functional human DNA that are not shared among these species, and which would thus not be revealed by these studies. Conversely there are even some questions about basic hypothesis that conserved sequences all must function [12]. On a theoretical note, it is often observed that the presence of high proportions of truly nonfunctional "junk" DNA would seem to defy evolutionary logic. Replication of such a large amount of useless information each time a cell divides would waste energy. Organisms with less nonfunctional DNA would thus enjoy a selective advantage, and over an evolutionary time scale, nonfunctional DNA would tend to be eliminated. If one assumes that most junk DNA is indeed nonfunctional, then there are several hypotheses for why it has not been eliminated by evolution: (1) The energy required to replicate even large amounts of nonfunctional DNA is in fact relatively insignificant on the cellular or organismal scale, so no selective pressure results (selection coefficients less than one over the population size are effectively neutral); (2) The aforementioned possible advantage of having extra DNA as a reservoir of potentially useful sequences and similarly as a protective buffer against harmful genetic damage or mutations; and (3) Retrotransposon insertions of nonfunctional sequence occurring faster than evolution can eliminate it. These are all hypotheses for which the time scales involved in evolution may make it difficult for humans to investigate rigorously. Functions for Junk DNA
See also
References
Further reading
Categories: DNA | Genomics | Mobile genetic elements |
|||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Junk_DNA". A list of authors is available in Wikipedia. |