To use all functions of this page, please activate cookies in your browser.
my.bionity.com
With an accout for my.bionity.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Hypoxia-inducible factors
Hypoxia-inducible factors (HIFs) are transcription factors that respond to changes in available oxygen in the cellular environment, in specific, to decreases in oxygen, or hypoxia. Additional recommended knowledge
StructureMost, if not all, oxygen-breathing species express the highly-conserved transcriptional complex HIF-1, which is a heterodimer composed of an alpha and a beta subunit, the latter being a constituitively-expressed aryl hydrocarbon receptor nuclear translocator (ARNT). HIF-1 belongs to the PER-ARNT-SIM (PAS) subfamily of the basic-helix-loop-helix (bHLH) family of transcription factors. Responsive actionThe alpha subunit of HIF-1 is a target for prolyl hydroxylation by HIF prolyl-hydroxylase, which makes HIF-1 α a target for degradation by the E3 ubiquitin ligase complex, leading to quick degradation by the proteasome. This occurs only in normoxic conditions. In hypoxic conditions, HIF prolyl-hydroxylase is inhibited, since it utilizes oxygen as a cosubstrate. Hypoxia also results in a buildup of succinate, due to inhibition of the electron transport chain in the mitochondria. The buildup of succinate further inhibits HIF prolyl-hydroxylase action, since it is an end-product of HIF hydoxylation. In a similar manner, inhibition of electron transfer in the succinate dehydrogenase complex due to mutations in the SDHB or SDHD genes can cause a build-up of succinate that inhibits HIF prolyl-hydroxylase, stabilizing HIF-1 α. This is termed pseudohypoxia. HIF-1, when stabilized by hypoxic conditions, upregulates several genes to promote survival in low-oxygen conditions. These include glycolysis enzymes, which allow ATP synthesis in an oxygen-independent manner, and vascular endothelial growth factor (VEGF), which promotes angiogenesis. HIF-1 acts by binding to HIF-responsive elements (HREs) in promoters that contain the sequence NCGTG. In general, HIFs are vital to development. In mammals, deletion of the HIF-1 genes results in perinatal death. HIF-1 has been shown to be vital to chondrocyte survival, allowing the cells to adapt to low-oxygen conditions within the growth plates of bones. See also
References
Categories: Genes on chromosome 14 | Genes on chromosome 19 | Developmental biology | Genes | Transcription factors |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Hypoxia-inducible_factors". A list of authors is available in Wikipedia. |