My watch list
my.bionity.com  
Login  

Hyperaccumulators table – 3



This section covers radionuclides, hydrocarbures and organic solvents, and informations on the plants used for their remediation.

Links to the other sections:

  • Click here for Hyperaccumulators table – 1 : Al, Ag, As, Be, Cr, Cu, Mn, Hg, Mo, Naphtalene, Pb, Pd, Pt, Se, Zn
  • Click here for Hyperaccumulators table – 2 : Nickel

Hyperaccumulators table – 3

hyperaccumulators and contaminants: Radionuclides, Hydrocarbures and Organic Solvents – accumulation rates
Contaminant Accumulation rates (in mg/kg of dry weight) Latin name English name H-Hyperaccumulator or A-Accumulator P-Precipitator T-Tolerant Notes Sources
Cd-Cadmium xxx Athyrium yokoscense (Japanese false spleenwort?) Cd(A), Cu(H), Pb(H), Zn(H) Origin Japan [1]
Cd-Cadmium >100 Avena strigosa Schreb. New-Oat xxx xxx [2]
Cd-Cadmium H- Bacopa monnieri Smooth Water Hyssop Cr(H), Cu(H), Hg(A), Pb(A) Origin India; aquatic emergent species [1][3]
Cd-Cadmium xxx Brassicaeae Cabbage family Hyperaccumulators: Cd, Cs, Ni, Sr, Zn Phytoextraction [4]
Cd-Cadmium A- Brassica juncea L. Indian mustard Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), Ur(A), Zn(H) cultivated ,[1][4][5]
Cd-Cadmium H- Callisneria Americana Tape Grass Cr(A), Cu(H), Pb(H) Origins Europe and N. Africa; extensively cultivated in the aquarium trade [1]
Cd-Cadmium >100 Crotalaria juncea xxx xxx High amounts of total soluble phenolics [2]
Cd-Cadmium H- Eichhornia crassipes Water Hyacinth Cr(A), Cu(A), Hg(H), Pb(H), Zn(A). Also Cs, Sr, U,[6] and pesticides[7] Pantropical/Subtropical, 'the troublesome weed' [1]
Cd-Cadmium xxx Helianthus annuus Sunflower xxx Phytoextraction & rhizofiltration ,[1][4][8]
Cd-Cadmium H- Hydrilla verticallata Hydrilla Cr(A), Hg(H), Pb(H) xxx [1]
Cd-Cadmium H- Lemna minor Duckweed Pb(H), Cu(H), Zn(A) Native to North America and widespread [1]
Cd-Cadmium T- Pistia stratiotes Water Lettuce Cu(T), Hg(H), Cr(H) Pantropical, Origin South U.S.A.; aquatic herb [1]
Cd-Cadmium xxx Salix viminalis L. Common Osier, basket Willow Ag, Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products;[4] Pb, U, Zn (S. viminalix);[8] Potassium ferrocyanide (S. babylonica L.)[9] Phytoextraction. Perchlorate (wetland halophytes) [8]
Cd-Cadmium xxx Spirodela polyrhiza Giant Duckweed Cr(H), Pb(H), Ni(H), Zn(A) Native to North America [1][10][11]
Cd-Cadmium >100 Tagetes erecta L. African-tall xxx Tolerance only. Lipid peroxidation level increases; activities of antioxidative enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione reductase, and catalase are depressed. [2]
Cd-Cadmium xxx Thlaspi caerulescens Alpine pennycress Cr(A), Co(H), Cu(H), Mo, Ni(H), Pb(H), Zn(H) Phytoextraction. Its rhizosphere's bacterial population is less dense than with Trifolium pratense but richer in specific metal-resistant bacteria.[12] ,[1][4][10][13][14][15][16]
Cd-Cadmium 1000 Vallisneria spiralis Eel grass xxx 37 records of plants; origin India [10][17]
Cs-137 (Cesium–137) xxx Acer Rubrum, Acer Red maple, Sycamore maple Pu-238, Sr-90 Leaves: much less uptake in Larch and Sycamore maple than in Spruce.[18] [6]
Cs-137 (Cesium–137) xxx Agrostis plant communities Agrostis spp. xxx Grass or Forb species capable of accumulating radionuclides [6]
Cs-137 (Cesium–137) up to 3000 Bq kg-1[19] Amaranthus retroflexus ( cv. Belozernii, aureus, Pt-95) Redroot Amaranth Hyperaccumulator: Cd, Cs, Ni, Sr, Zn.[4] Phytoextraction. Can accumulate radionuclides, ammonium nitrate and ammonium chloride as chelating agents.[6] Maximum concentration is reached after 35 days of growth.[19] xxx
Cs-137 (Cesium–137) xxx Brassicaeae xxx Hyperaccumulators: Cd, Cs, Ni, Sr, Zn Phytoextraction. Ammonium nitrate and ammonium chloride as chelating agents.[6] [4]
Cs-137 (Cesium–137) xxx Brassica juncea Indian mustard xxx Contains 2 to 3 times more Cs137 in his roots than in the biomass above ground.[19] Ammonium nitrate and ammonium chloride as chelating agents. [6]
Cs-137 (Cesium–137) xxx Cerastium fontanum Big Chickweed xxx Grass or Forb species capable of accumulating radionuclides [6]
Cs-137 (Cesium–137) xxx Chenopodiaceae Beet, Quinoa, Russian thistle Sr-90, Cs-137 Grass or Forb species capable of accumulating radionuclides [6]
Cs-137 (Cesium–137) xxx Cocos nucifera Coconut palm xxx Tree able to accumulate radionuclides [6]
Cs-137 (Cesium–137) xxx Eichhornia crassipes Hyacinth U, Sr (high % uptake within a few days[6]). Also Cd(H), Cr(A), Cu(A), Hg(H), Pb, Zn(A),[1] and pesticides.[7] xxx [6]
Cs-137 (Cesium–137) xxx Eragrostis bahiensis Bahia lovegrass xxx Glomus mosseae as amendment. It increases the surface area of the plant roots, allowing roots to acquire more nutrients, water and therefore more available radionuclides in soil solution. [6]
Cs-137 (Cesium–137) xxx Eucalyptus tereticornis Forest redgum Sr-90 Tree able to accumulate radionuclides [6]
Cs-137 (Cesium–137) xxx Festuca arundinacea Tall Fescue xxx Grass or Forb species capable of accumulating radionuclides [6]
Cs-137 (Cesium–137) xxx Festuca rubra Fescue xxx Grass or Forb species capable of accumulating radionuclides [6]
Cs-137 (Cesium–137) xxx Glomus mosseae as chelating agent Mycorrhizal fungi xxx Glomus mosseae as amendment. It increases the surface area of the plant roots, allowing roots to acquire more nutrients, water and therefore more available radionuclides in soil solution. [6]
Cs-137 (Cesium–137) xxx Glomus intradices Mycorrhizal fungi xxx Glomus mosseae as chelating agent. It increases the surface area of the plant roots, allowing roots to acquire more nutrients, water and therefore more available radionuclides in soil solution. [6]
Cs-137 (Cesium–137) 4900-8600[20] Helianthus annuus Sunflower U, Sr (high % uptake within a few days[6]) Accumulates up to 8 times more Cs137 than timothy or foxtail. Contains 2 to 3 times more Cs137 in his roots than in the biomass above ground.[19] ,[1][6][10]
Cs-137 (Cesium–137) xxx Larix Larch xxx Leaves: much less uptake in Larch and Sycamore maple than in Spruce. 20% of the translocated cesium into new leaves resulted from root-uptake 2.5 years after the Chernobyl accident.[18] xxx
Cs-137 (Cesium–137) xxx Liquidambar stryaciflua American Sweet Gum Pu-238, Sr-90 Tree able to accumulate radionuclides [6]
Cs-137 (Cesium–137) xxx Liriodendron tulipfera Tulip tree Pu-238, Sr-90 Tree able to accumulate radionuclides [6]
Cs-137 (Cesium–137) xxx Lolium multiflorum Italian Ray-grass Sr Mycorrhizae: accumulates much more cesium-137 and strontium-90 when grown in Sphagnum peat than in any other medium incl. Clay, sand, silt and compost.[21] [6]
Cs-137 (Cesium–137) xxx Lolium perenne Perennial ryegrass xxx Can accumulate radionuclides [6]
Cs-137 (Cesium–137) xxx Panicum virgatum Switchgrass xxx xxx [6]
Cs-137 (Cesium–137) xxx Phaseolus acutifolius Tepary Beans Hyperaccumulator: Cd, Cs, Ni, Sr, Zn.[4] Phytoextraction. Ammonium nitrate and ammonium chloride as chelating agents.[6] xxx
Cs-137 (Cesium–137) xxx Phalaris arundinacea L. Reed Canarygrass Hyperaccumulator: Cd, Cs, Ni, Sr, Zn.[4] Ammonium nitrate and ammonium chloride as chelating agents.[6] Phytoextraction xxx
Cs-137 (Cesium–137) xxx Picea abies Spruce xxx Conc. about 25-times higher in bark compared to wood, 1.5–4.7 times higher in directly contaminated twig-axes than in leaves.[18] xxx
Cs-137 (Cesium–137) xxx Pinus radiata, Pinus ponderosa Monterey Pine, Ponderosa pine Sr-90. Also Petroleum hydrocarbures, Organic solvents, MTBE, TCE-trichloroethylene and by-products (Pinus spp.[4] Phytocontainment. Tree able to accumulate radionuclides. [6]
Cs-137 (Cesium–137) xxx Sorghum halepense Johnson Grass xxx xxx [6]
Cs-137 (Cesium–137) xxx Trifolium repens White Clover xxx Grass or Forb species capable of accumulating radionuclides [6]
Cs-137 (Cesium–137) H Zea mays Corn xxx High absorption rate. Accumulates radionuclides.[16] Contains 2 to 3 times more Cs137 in his roots than in the biomass above ground.[19] ,[1][10][6]
Co-Cobalt 1000 to 4304[22] Haumaniustrum robertii xxx xxx 27 records of plants; origin Africa. Vernacular name: 'copper flower'. This species' phanerogamme has the highest cobalt content. Its distribution could be gouverned by cobalt rather than copper.[22] [10][14]
Co-Cobalt H- Thlaspi caerulescens Alpine pennycress Cd(H), Cr(A), Cu(H), Mo, Ni(H), Pb(H), Zn(H) Phytoextraction ,[1],[4],[10][12][13][14][15]
Pu-238 xxx Acer Rubrum Red maple Cs-137, Sr-90 Tree able to accumulate radionuclides [6]
Pu-238 xxx Liquidambar stryaciflua American Sweet Gum Cs-137 Sr-90 Tree able to accumulate radionuclides [6]
Pu-238 xxx Liriodendron tulipfera Tulip tree Cs-137, Sr-90 Tree able to accumulate radionuclides [6]
Ra-Radium xxx xxx xxx xxx No reports found for accumulation [10]
Sr-Strontium xxx Acer Rubrum Red maple Cs-137, Pu-238 Tree able to accumulate radionuclides [6]
Sr-Strontium xxx Brassicaeae xxx Hyperaccumulators: Cd, Cs, Ni, Zn Phytoextraction [4]
Sr-Strontium xxx Chenopodiaceae Beet, Quinoa, Russian thistle Sr-90, Cs-137 Can accumulate radionuclides. [6]
Sr-Strontium xxx Eichhornia crassipes Water Hyacinth Cs-137, U-234, 235, 238. Also Cd(H), Cr(A), Cu(A), Hg(H), Pb, Zn(A),[1] and pesticides.[7] In pH of 9, accumulates high concentrations of Sr90 with apprx. 80 to 90% of it in its roots.[20] [6]
Sr-Strontium xxx Eucalyptus tereticornis Forest redgum Cs-137 Tree able to accumulate radionuclides [6]
Sr-Strontium H-? Helianthus annuus Sunflower xxx Accumulates radionuclides;[16] high absorption rate. Phytoextraction & rhizofiltration ,[1][4][10][6]
Sr-Strontium xxx Liquidambar stryaciflua American Sweet Gum Cs-137, Pu-238 Tree able to accumulate radionuclides [6]
Sr-Strontium xxx Liriodendron tulipfera Tulip tree Cs-137, Pu-238 Tree able to accumulate radionuclides [6]
Sr-Strontium xxx Lolium multiflorum Italian Ray-grass Cs Mycorrhizae: accumulates much more cesium-137 and strontium-90 when grown in Sphagnum peat than in any other medium incl. clay, sand, silt and compost.[21] [6]
Sr-Strontium 1.5-4.5 % in their shoots Pinus radiata, Pinus ponderosa Monterey Pine, Ponderosa pine Petroleum hydrocarbures, Organic solvents, MTBE, TCE-trichloroethylene and by-products;[4] Cs-137 Phytocontainment. Accumulate 1.5-4.5 % of Sr-90 in their shoots.[20] [6]
Sr-Strontium xxx Umbelliferae xxx xxx Species most capable of accumulating radionuclides [6]
Sr-Strontium xxx Legume family xxx xxx Species most capable of accumulating radionuclides [6]
U-Uranium xxx Amaranthus Amaranth Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), Zn(H) Citric acid chelating agent,[8] and see note. Cs: maximum concentration is reached after 35 days of growth.[19] [1][6]
U-Uranium xxx Brassica juncea, Brassica chinensis, Brassica narinosa Cabbage family Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), Zn(H) Citric acid chelating agent increases uptake 1000 times,[23][8] and see note ,[1][4][6]
U-234, 235, 238 xxx Eichhornia crassipes Water Hyacinth Cs-137, Sr-90. Also Cd(H), Cr(A), Cu(A), Hg(H), Pb, Zn(A),[1] and pesticides.[7] xxx [6]
U-Uranium 234, 235, 238 95% of U in 24 hours.[19] Helianthus annuus Sunflower xxx Accumulates radionuclides;[16] At a contaminated wastewater site in Ashtabula, Ohio, 4 wk-old splants can remove more than 95% of uranium in 24 hours.[19] Phytoextraction & rhizofiltration. ,[1],[4][10][6][8]
U-Uranium xxx Juniperus Juniper xxx Accumulates (radionuclides) U in his roots[20] [6]
U-Uranium xxx Picea mariana Black Spruce xxx Accumulates (radionuclides) U in his twigs[20] [6]
U-Uranium xxx Quercus Oak xxx Accumulates (radionuclides) U in his roots[20] [6]
U-Uranium xxx xxx Russian Thistle (tumble weed) xxx xxx  ??
U-Uranium xxx Salix viminalis Common Osier Ag, Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products;[4] Cd, Pb, Zn (S. viminalis);[8] Potassium ferrocyanide (S. babylonica L.)[9] Phytoextraction. Perchlorate (wetland halophytes) [8]
U-Uranium xxx Silence eucapalis Bladder campion xxx xxx  ??
U-Uranium xxx Zea Mays Sweet Corn xxx xxx  ??
U-Uranium A-? xxx xxx xxx xxx [10]
Radionuclides xxx Tradescantia bracteata Spiderworts xxx Indicator for radionuclides: the stamens (normally blue or blue-purple) become pink when exposed to radionuclides [6]
Benzene xxx Chlorophytum comosum xxx xxx xxx [24]
Benzene xxx Ficus elastica xxx xxx xxx [24]
Benzene xxx Kalanchoe blossfeldiana xxx xxx seems to take benzene selectively over toluene. [24]
Benzene xxx Pelargonium domesticum xxx xxx xxx [24]
BTEX xxx Phanerochaete chrysosporium White rot fungus DDT, Dieldrin, Endodulfan, Pentachloronitro-benzene, PCP Phytostimulation [4]
DDT xxx Phanerochaete chrysosporium White rot fungus BTEX, Dieldrin, Endodulfan, Pentachloronitro-benzene, PCP Phytostimulation [4]
Dieldrin xxx Phanerochaete chrysosporium White rot fungus DDT, BTEX, Endodulfan, Pentachloronitro-benzene, PCP Phytostimulation [4]
Endodulfan xxx Phanerochaete chrysosporium White rot fungus DDT, BTEX, Dieldrin, PCP, Pentachloronitro-benzène Phytostimulation [4]
Fluoranthene xxx Cyclotella caspia xxx xxx Approximate rate of biodegradation on 1st day: 35%; on 6th day: 85% (rate of physical degradation 5.86% only). [25]
Hydrocarbures xxx Cynodon dactylon (L.) Pers. Bermuda grass xxx Mean petroleum hydrocarbures reduction of 68% after 1 year [8]
Hydrocarbures xxx Festuca arundinacea Tall fescue xxx Mean petroleum hydrocarbures reduction of 62% after 1 year[8] [26]
Hydrocarbures xxx Pinus spp. Pine spp. Organic solvents, MTBE, TCE-trichloroethylene and by-products.[4] Also Cs-137, Sr-90[6] Phytocontainment. Tree able to accumulate radionuclides (P. ponderosa, P. radiata)[6] [4]
Hydrocarbures xxx Salix Spp. Osier spp. Ag, Cr, Hg, Se, Organic solvents, MTBE, TCE and by-products;[4] Cd, Pb, U, Zn (S. viminalis);[8] Potassium ferrocyanide (S. babylonica L.)[9] Phytoextraction. Perchlorate (wetland halophytes) [4]
MTBE xxx Pinus spp. Pine spp. Petroleum hydrocarbures, Organic solvents, TCE-trichloroethylene and by-products.[4] Also Cs-137, Sr-90 (Pinus radiata, Pinus ponderosa)[6] Phytocontainment. Tree able to accumulate radionuclides (P. ponderosa, P. radiata)[6] [4]
MTBE xxx Salix Spp. Osier spp. Ag, Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, TCE and by-products;[4] Cd, Pb, U, Zn (S. viminalis);[8] Potassium ferrocyanide (S. babylonica L.)[9] Phytoextraction, phytocontainment. Perchlorate (wetland halophytes) [4]
Organic solvents xxx Pinus spp. Pine spp. Petroleum hydrocarbures MTBE, TCE-trichloroethylene and by-products.[4] Also Cs-137, Sr-90 (Pinus radiata, Pinus ponderosa)[6] Phytocontainment. Tree able to accumulate radionuclides (P. ponderosa, P. radiata)[6] [4]
Organic solvents xxx Salix Spp. Osier spp. Ag, Cr, Hg, Se, Petroleum hydrocarbures, MTBE, TCE and by-products;[4] Cd, Pb, U, Zn (S. viminalis);[8] Potassium ferrocyanide (S. babylonica L.)[9] Phytoextraction. phytocontainment . Perchlorate (wetland halophytes) [4]
Organic solvents xxx Pinus spp. Pine spp. Petroleum hydrocarbures MTBE, TCE-trichloroethylene and by-products.[4] Also Cs-137, Sr-90 (Pinus radiata, Pinus ponderosa)[6] Phytocontainment. Tree able to accumulate radionuclides (P. ponderosa, P. radiata)[6] [4]
Organic solvents xxx Salix Spp. Osier spp. Ag, Cr, Hg, Se, Petroleum hydrocarbures, MTBE, TCE and by-products;[4] Cd, Pb, U, Zn (S. viminalis);[8] Potassium ferrocyanide (S. babylonica L.)[9] Phytoextraction. phytocontainment . Perchlorate (wetland halophytes) [4]
Pentachloronitro-benzene xxx Phanerochaete chrysosporium White rot fungus DDT, BTEX, Dieldrin, Endodulfan, PCP Phytostimulation [4]
Potassium ferrocyanide 8.64% to 15.67% of initial mass S. babylonica L. Weeping Willow Ag, Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products (Salix spp.);[4] Cd, Pb, U, Zn (S. viminalis);[8] Potassium ferrocyanide (S. babylonica L.)[9] Phytoextraction. Perchlorate (wetland halophytes). No ferrocyanide in air from plant transpiration. A large fraction of initial mass was metabolized during transport within the plant.[9] [9]
Potassium ferrocyanide 8.64% to 15.67% of initial mass Salix matsudana Koidz, Salix matsudana Koidz x Salix alba L. Hankow Willow, Hybrid Willow Ag, Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products (Salix spp.);[4] Cd, Pb, U, Zn (S. viminalis).[8] No ferrocyanide in air from plant transpiration. [9]
PCB xxx Rosa spp. Paul’s Scarlet Rose xxx Phytodegradation [4]
PCP xxx Phanerochaete chrysosporium White rot fungus DDT, BTEX, Dieldrin, Endodulfan, Pentachloronitro-benzène Phytostimulation [4]
TCE-trichloroethylene xxx Chlorophytum comosum xxx xxx Seems to lower the removal rates of benzene and methane. [24]
TCE-trichloroethylene and by-products xxx Pinus Pine spp. Petroleum hydrocarbures, Organic solvents, MTBE.[4] Also Cs-137, Sr-90 (Pinus radiata, Pinus ponderosa)[6] Phytocontainment. Tree able to accumulate radionuclides (P. ponderosa, P. radiata)[6] [4]
TCE-trichloroethylene and by-products xxx Salix Spp. Osier spp. Ag, Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE;[4] Cd, Pb, U, Zn (S. viminalis);[8] Potassium ferrocyanide (S. babylonica L.)[9] Phytoextraction, phytocontainment. Perchlorate (wetland halophytes) [4]
xxx xxx xxx Banana tree xxx Extra-dense root system, good for rhizofiltration.[27] xxx
xxx xxx xxx Papyrus xxx Extra-dense root system, good for rhizofiltration[27] xxx
xxx xxx xxx Taros xxx Extra-dense root system, good for rhizofiltration[27] xxx
xxx xxx Brugmansia spp. Angel's trumpet xxx Semi-anaerobic, good for rhizofiltration [28]
xxx xxx Caladium Caladium xxx Semi-anaerobic and resistant, good for rhizofiltration[28] xxx
xxx xxx Caltha palustris Marsh marigold xxx Semi-anaerobic and resistant, good for rhizofiltration[28] xxx
xxx xxx Iris pseudacorus Yellow Flag, paleyellow iris xxx Semi-anaerobic and resistant, good for rhizofiltration[28] xxx
xxx xxx Mentha aquatica Water Mint xxx Semi-anaerobic and resistant, good for rhizofiltration[28] xxx
xxx xxx Scirpus lacustris Bulrush xxx Semi-anaerobic and resistant, good for rhizofiltration[28] xxx
xxx xxx Typha latifolia Broadleaf cattail xxx Semi-anaerobic and resistant, good for rhizofiltration[28] xxx

Notes

  • Uranium: The symbol for Uranium is sometimes given as Ur instead of U. According to Ulrich Schmidt[8] and others, plants' concentration of uranium is considerably increased by an application of citric acid, which solubilizes the Uranium (and other metals).
  • Radionuclides: Cs-137 and Sr-90 are not removed from the top 0.4 meters of soil even under high rainfall, and migration rate from the top few centimeters of soil is slow.[29]
  • Radionuclides: Plants with mycorrhizal associations are often more effective than non-mycorrhizal plants at the uptake of radionuclides.[30]
  • Radionuclides: In general, soils containing higher amounts of organic matter will allow plants to accumulate higher amounts of radionuclides.[29] See also note on Lolium multiflorum in Paasikallio 1984.[21] Plant uptake is also increased with a higher cation exchange capacity for Sr-90 availability, and a lower base saturation for uptake of both Sr-90 and Cs-137.[29]
  • Radionuclides: Fertilizing the soil with nitrogen if needed will indirectly increase the take-up of radionuclides by generally boosting the plant's overall growth and more specifically roots' growth. But some fertilizers such as K or Ca compete with the radionuclides for cation exchange sites, and will not increase the take-up of radionuclides.[29]
  • Radionuclides: Zhu and Smolders, lab test:[31] Cs uptake is mostly influenced by K supply. The uptake of radiocesium depends mainly on two transport pathways on plant root cell membranes: the K+ transporter and the K+ channel pathway. Cs is likely transported by the K+ transport system. When external concentration of K is limited to low levels, le K+ transporter shows little discrimination against Cs+; if K supply is high, the K+ channel is dominant and shows high discrimination against Cs+. Cesium is very mobile within the plant, but the ratio Cs/K is not uniform within the plant. Phytoremediation as a possible option for the decontamination of cesium-contaminated soils is limited mainly by that it takes tens of years and creates large volumes of waste.
  • Alpine pennycress or «Alpine Pennygrass» is found as «Alpine Pennycrest» in (some books).
  • The references are so far mostly from academic trial papers, experiments and generally of exploration of that field.
  • Radionuclides: Broadley and Willey[32] find that across 30 taxa studied, Gramineae and Chenopodiaceae show the strongest correlation between Rb (K) and Cs concentration. The fast growing Chenopodiaceae discriminate approx. 9 times less between Rb and Cs than the slow growingGramineae, and this correlate with highest and lowest concentrations achieved respectively.
  • Cesium: In Chernobyl-derived radioactivity, the amount of contamination is dependent on the roughness of bark, absolute bark surface and the existence of leaves during the deposition. The major contamination of the shoots is from direct deposition on the trees.[18]

Annotated References

  1. ^ a b c d e f g h i j k l m n o p q r s t u McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 898
  2. ^ a b c [1] Shimpei Uraguchi, Izumi Watanabe, Akiko Yoshitomi, Masako Kiyono and Katsuji Kuno, Characteristics of cadmium accumulation and tolerance in novel Cd-accumulating crops, Avena strigosa and Crotalaria juncea. Journal of Experimental Botany 2006 57(12):2955-2965; doi:10.1093/jxb/erl056
  3. ^ Gurta et al. 1994
  4. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 19
  5. ^ [2] Lindsay E. Bennetta, Jason L. Burkheada, Kerry L. Halea, Norman Terryb, Marinus Pilona and Elizabeth A. H. Pilon-Smits, Analysis of Transgenic Indian Mustard Plants for Phytoremediation of Metal-Contaminated Mine Tailings. Journal of Environmental Quality 32:432-440 (2003)
  6. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj [3] Phytoremediation of radionuclides.
  7. ^ a b c d [4] J.K. Lan. Recent developments of phytoremediation.
  8. ^ a b c d e f g h i j k l m n o p q r [5], Enhancing Phytoextraction: The Effect of Chemical Soil Manipulation on Mobility, Plant Accumulation, and Leaching of Heavy Metals, by Ulrich Schmidt.
  9. ^ a b c d e f g h i j k [6] Yu X.Z., Zhou P.H. and Yang Y.M., The potential for phytoremediation of iron cyanide complex by Willows.
  10. ^ a b c d e f g h i j k McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 891
  11. ^ Srivastav 1994
  12. ^ a b [7] T.A. Delorme, J.V. Gagliardi, J.S. Angle, and R.L. Chaney. Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations. Conseil National de Recherches du Canada,
  13. ^ a b [8] Majeti Narasimha Vara Prasad, Nickelophilous plants and their significance in phytotechnologies. Braz. J. Plant Physiol. Vol.17 no.1 Londrina Jan./Mar. 2005
  14. ^ a b c Baker & Brooks, 1989
  15. ^ a b [9] E. Lombi, F.J. Zhao, S.J. Dunham et S.P. McGrath, Phytoremediation of Heavy Metal, Contaminated Soils, Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction.
  16. ^ a b c d Phytoremediation Decision Tree, ITRC
  17. ^ Brown et al. 1995
  18. ^ a b c d [10], J. Ertel and H. Ziegler, Cs-134/137 contamination and root uptake of different forest trees before and after the Chernobyl accident, Radiation and Environmental Biophysics, June 1991, Vol. 30, nr. 2, pp. 147-157
  19. ^ a b c d e f g h Dushenkov, S., A. Mikheev, A. Prokhnevsky, M. Ruchko, and B. Sorochinsky, Phytoremediation of Radiocesium-Contaminated Soil in the Vicinity of Chernobyl, Ukraine. Environmental Science and Technology 1999. 33, no. 3 : 469-475. Cited in Phytoremediation of radionuclides.
  20. ^ a b c d e f Negri, C. M., and R. R. Hinchman, 2000. The use of plants for the treatment of radionuclides. Chapter 8 of Phytoremediation of toxic metals: Using plants to clean up the environment, ed. I. Raskin and B. D. Ensley. New York: Wiley-Interscience Publication. Cited in Phytoremediation of Radionuclides.
  21. ^ a b c A. Paasikallio, The effect of time on the availability of strontium-90 and cesium-137 to plants from Finnish soils. Annales Agriculturae Fenniae, 1984. 23: 109-120. Cited in Westhoff99.
  22. ^ a b [11] R. R. Brooks, Copper and cobalt uptake by Haumaniustrum species.
  23. ^ Huang, J. W., M. J. Blaylock, Y. Kapulnik, and B. D. Ensley, 1998. Phytoremediation of Uranium-Contaminated Soils: Role of Organic Acids in Triggering Uranium Hyperaccumulation in Plants. Environmental Science and Technology. 32, no. 13 : 2004-2008. Cited in Phytoremediation of radionuclides.
  24. ^ a b c d e [12] J.J.Cornejo, F.G.Muñoz, C.Y.Ma and A.J.Stewart, Studies on the decontamination of air by plants.
  25. ^ [13]. Yu Liu, Tian-Gang Luan, Ning-Ning Lu, Chong-Yu Lan, Toxicity of Fluoranthene and Its Biodegradation by Cyclotella caspia Alga. Journal of Integrative Plant Biology, Fev. 2006
  26. ^ [14] S.D. Siciliano, J.J. Germida, K. Banks and C. W. Greer. Changes in Microbial Community Composition and Function during a Polyaromatic Hydrocarbon Phytoremediation Field Trial. Applied and Environmental Microbiology, January 2003, p. 483-489, Vol. 69, No. 1
  27. ^ a b c [15] "Living Machines". Erik Alm describes them as 'freaks' because of their over-abundant root system even in such nutrient-rich environnements. This is a prime factor in treating wastewaters: more surface for adsorption / absorption, and finer filter for larger impurities
  28. ^ a b c d e f g [16], "Living Machines". These marsh plants can live in semi-anaerobic environments and are used in wastewater treating ponds
  29. ^ a b c d [17] J.A. Entry, N.C. Vance, M.A. Hamilton, D. Zabowski, L.S. Watrud, D.C. Adriano. Phytoremediation of soil contaminated with low concentrations of radionuclides. Water, Air, and Soil Pollution, 1996. 88: 167-176. Cited in Westhoff99.
  30. ^ J.A. Entry, P. T. Rygiewicz, W.H. Emmingham. Strontium-90 uptake by Pinus ponderosa and Pinus radiata seedlings inoculated with ectomycorrhizal fungi. Environmental Pollution 1994, 86: 201-206. Cited in Westhoff99.
  31. ^ [18] Y-G. Zhu and E. Smolders, Plant uptake of radiocaesium: a review of mechanisms, regulation and application. Journal of Experimental Botany, Vol. 51, No. 351, pp. 1635-1645, October 2000
  32. ^ [19] M.R. Broadley and N.J. Willey. Differences in root uptake of radiocaesium by 30 plant taxa. Environmental Pollution 1997, Volume 97, Issues 1-2, Pages 11-15

Links to the other sections:

  • Click here for Hyperaccumulators table – 1 : Al, Ag, As, Be, Cr, Cu, Mn, Hg, Mo, Naphtalene, Pb, Pd, Pt, Se, Zn
  • Click here for Hyperaccumulators table – 2 : Nickel
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Hyperaccumulators_table_–_3". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE