To use all functions of this page, please activate cookies in your browser.
my.bionity.com
With an accout for my.bionity.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Human fertilization
Human fertilization is the fertilization in humans. It is the union of a human egg and sperm, usually occurring in the ampulla of the fallopian tube. It is also the initiation of prenatal development. Fertilization constitutes the penetration of the oocyte which the sperm performs, fusion of the sperm and oocyte, succeeded by fusion of their genetic material. Additional recommended knowledge
PenetrationA single sperm penetrates the cell membrane of the oocyte. To reach the oocyte, the sperm must pass through the corona radiata and the zona pellucida; two layers covering and protecting the oocyte from fertilization by more than one sperm. The two nuclei of the sperm and egg cells meet together, this is called fertilization. Corona radiataThe sperm passes through the corona radiata, a layer of follicle cells on the outside of the secondary oocyte. Zona pellucidaThe sperm then reaches the zona pellucida, which is an extra-cellular matrix of glyco-proteins. A special complementary molecule on the surface of the sperm head then binds to a ZP3 glyco-protein in the zona pellucida. This binding triggers the acrosomal reaction, where a special vesicle of enzymes at the sperm head, the acrosome, bursts, releasing enzymes that help the sperm get through the zona pellucida. The most important of these enzymes is acrosin, for which the acrosome is named. Cortical reactionWhen the sperm penetrates the zona pellucida, the cortical reaction occurs: cortical granules inside the secondary oocyte fuses with the plasma membrane of the cell, causing enzymes inside these granules to be expelled by exocytosis to the zona pellucida. This in turn causes the glyco-proteins in the zona pellucida to cross-link with each other, making the whole matrix hard and impermeable to sperm. This prevents fertilization of an egg by more than one sperm. FusionThe sperm fuses with the oocyte, enabling fusion of their genetic material, in turn. Cell membranesThe cell membranes of the secondary oocyte and sperm fuse together. TransformationsBoth the oocyte and the sperm goes through transformations, as a reaction to the fusion of cell membranes, preparing for the fusion of their genetic material. The oocyte now completes its second meiotic division. This results in a mature ovum. The nucleus of the oocyte is called a pronucleus in this process, to distinguish it from the nuclei that are the result of fertilization. The sperm's tail and mitochondria degenerate with the formation of the male pronucleus. This is why all mitochondria in humans are of maternal origin. ReplicationThe pronuclei migrate toward the center of the oocyte, rapidly replicating their DNA as they do so to prepare the new human for its first mitotic division. MitosisThe male and female pronuclei don't fuse, although their genetic material do so. Instead, their membranes dissolve, leaving no barriers between the male and female chromosomes. During this dissolution, a mitotic spindle forms around them to catch the chromosomes before they get lost in the egg cytoplasm. By subsequently performing a mitosis (which includes pulling of chromatids towards centrosomes in anaphase) the cell gathers genetic material from the male and female together. Thus, the first mitosis of the union of sperm and oocyte is the actual fusion of their chromosomes. Each of the two daughter cells resulting from that mitosis have one replica of each chromatid that was replicated in the previous stage. Thus, they are genetically identical. In other words, the sperm and oocyte don't fuse into one cell, but into two identical cells. DiseasesVarious disorders can arise from defects in the fertilization process.
See alsoReferences
Categories: Embryology | Fertility |
|||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Human_fertilization". A list of authors is available in Wikipedia. |