To use all functions of this page, please activate cookies in your browser.
my.bionity.com
With an accout for my.bionity.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Hair cell
Additional recommended knowledge
Hair bundles as sound detectorsResearch of the past decades has shown that outer hair cells do not send neural signals to the brain, but that they mechanically amplify low-level sound that enters the cochlea. The amplification may be powered by movement of their hair bundles, or by an electrically driven motility of their cell bodies. The inner hair cells transform the sound vibrations in the fluids of the cochlea into electrical signals that are then relayed via the auditory nerve to the auditory brainstem and to the auditory cortex. Inner hair cells – from sound to nerve signalThe deflection of the hair-cell stereocilia opens mechanically gated ion channels that allow any small, positively charged ions (primarily potassium and calcium) to enter the cell. Unlike many other electrically active cells, the hair cell itself does not fire an action potential. Instead, the influx of positive ions from the endolymph in Scala media depolarizes the cell, resulting in a receptor potential. This receptor potential opens voltage gated calcium channels; calcium ions then enter the cell and trigger the release of neurotransmitters, mainly glutamate, at the basal end of the cell. The neurotransmitters diffuse across the narrow space between the hair cell and a nerve terminal, where they then bind to receptors and thus trigger action potentials in the nerve. In this way, the mechanical sound signal is converted into an electrical nerve signal. The repolarization in the hair cell is done in a special manner. The perilymph in Scala tympani has a very low concentration of positive ions. The electrochemical gradient makes the positive ions flow through channels to the perilymph. Nerve fiber innervation is much more dense for inner hair cells than for outer hair cells. A single inner hair cell is innervated by numerous nerve fibers, whereas a single nerve fiber innervates many outer hair cells. Inner hair cell nerve fibers are also very heavily myelinated, which is in contrast to the unmyelinated outer hair cell nerve fibers. Outer hair cells – acoustical pre-amplifiersIn mammalian outer hair cells, the receptor potential triggers active vibrations of the cell body. This so-called somatic electromotility consists of oscillations of the cell’s length, which occur at the frequency of the incoming sound and in a stable phase relation. Outer hair cells have evolved only in mammals. They have not improved hearing sensitivity, which reaches similarly exquisite values also in other classes of vertebrates. But they have extended the hearing range from ca 11 kHz (maximum in some birds) to ca 200 kHz (maximum in some marine mammals). They have also improved frequency selectivity (frequency discrimination), which is of particular benefit for humans, because it enabled sophisticated speech and music. The molecular biology of hair cells has seen considerable progress in recent years, with the identification of the motor protein (prestin) that underlies somatic electromotility in the outer hair cells.. Hair-bundle motorsResults in recent years further indicate that mammals apparently also have conserved an evolutionarily earlier type of hair-cell motility. This so-called hair-bundle motility amplifies sound in all non-mammalian land vertebrates. It is effected by the closing mechanism of the mechanical sensory ion channels at the tips of the hair bundles. Thus, the same hair-bundle mechanism that detects sound vibrations also actively “vibrates back” and thereby mechanically amplifies weak incoming sound. Neural connectionNeuronal dendrites innervate cochlear hair cells. The neurotransmitter itself is thought to be glutamate. At the presynaptic juncture, there is a distinct “presynaptic dense body” or ribbon. This dense body is surrounded by synaptic vesicles and is thought to aid in the fast release of neurotransmitter. There are far fewer hair cells than afferent nerve fibers in the cochlea. The nerve that innervates the cochlea is the vestibulocochlear nerve, or cranial nerve number VIII. [1] Hair cells are chronically leaking Ca+2[citation needed]. This causes a tonic release of neurotransmitter of the hair/neuron synapse. It is thought that this tonic release is what allows the hair cell to respond so quickly with its response to stimuli. The quickness of the hair cell response may also be due to that fact that it can increase the amount of neurotransmitter release in response to a change as little as 100 μV in membrane potential. It is thought that the mechanism which allows the hair cell to do this is its chronic leaking of Ca+2 into the cytoplasm. Efferent projections from the brain to the cochlea also play a role in the perception of sound. Efferent synapses occur on outer hair cells and on afferent (towards the brain) dendrites under inner hair cells. The presynaptic terminal bouton is filled with vesicles containing acetylcholine and a neuropeptide called Calcitonin gene-related peptide (CGRP). They effects of these compounds varies, in some hair cells the acetylcholine hyperpolarized the cell, which reduces the frequency selectivity sharpness. Head hair Hair cells are located at the bottom of the cell in the epidermis. When these cells die it causes baldness. One folical can grow about 7 hairs in a life time. Additional imagesReferences
|
|||||||||||||||||||||||||||||||||||||||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Hair_cell". A list of authors is available in Wikipedia. |