To use all functions of this page, please activate cookies in your browser.
my.bionity.com
With an accout for my.bionity.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
H1 antihistamine
An H1-antihistamine is a histamine antagonist that serves to reduce or eliminate effects mediated by histamine, an endogenous chemical mediator released during allergic reactions, through action at the H1 receptor. Only agents where the main therapeutic effect is mediated by negative modulation of histamine receptors are termed antihistamines - other agents may have antihistaminergic action but are not true antihistamines. In common use, the term "antihistamine" refers only to H1-receptor antagonists, also known as H1-antihistamines. It has been discovered that these H1-antihistamines are actually inverse agonists at the histamine H1-receptor, rather than antagonists per se. [1] Additional recommended knowledge
PharmacologyIn allergic reactions, an allergen (a type of antigen) interacts with and cross-links surface IgE antibodies on mast cells and basophils. Once the mast cell-antibody-antigen complex is formed, a complex series of events occurs that eventually leads to cell degranulation and the release of histamine (and other chemical mediators) from the mast cell or basophil. Once released, histamine can react with local or widespread tissues through histamine receptors. Histamine, acting on H1-receptors, produces pruritus, vasodilatation, hypotension, flushing, headache, tachycardia, bronchoconstriction, increase in vascular permeability, potentiation of pain, and more. [2] While H1-antihistamines help against these effects, they work only if taken before contact with the allergen. In severe allergies, such as anaphylaxis or angioedema, these effects may be so severe as to be life-threatening. Additional administration of epinephrine, often in the form of an autoinjector (Epi-pen), is required by people with such hypersensitivities. Clinical use of H1-antihistaminesIndicationsH1-antihistamines are clinically used in the treatment of histamine-mediated allergic conditions. Specifically, these indications may include: [3]
H1-antihistamines can be administered topically (through the skin, nose, or eyes) or systemically, based on the nature of the allergic condition. The authors of the American College of Chest Physicians Updates on Cough Guidelines (2006) recommend that, for cough associated with the common cold, first-generation antihistamine-decongestants are more effective than newer, non-sedating antihistamines. First-generation antihistamines include diphenhydramine (Benadryl); carbinoxamine (Clistin); clemastine (Tavist); chlorpheniramine (Chlor-Trimeton) and brompheniramine (Dimetane). However, it is important to note that a 1955 study of "antihistaminic drugs for colds," carried out by the U.S. Army Medical Corps, reported that "there was no significant difference in the proportion of cures reported by patients receiving oral antihistaminic drugs and those receiving oral placebos. Furthermore, essentially the same proportion of patients reported no benefit from either type of treatment."[4] Adverse drug reactionsAdverse drug reactions are most commonly associated with the first-generation H1-antihistamines. This is due to their relative lack of selectivity for the H1-receptor. The most common adverse effect is sedation; this "side-effect" is utilized in many OTC sleeping-aid preparations. Other common adverse effects in first-generation H1-antihistamines include dizziness, tinnitus, blurred vision, euphoria, uncoordination, anxiety, insomnia, tremor, nausea and vomiting, constipation, diarrhea, dry mouth, and dry cough. Infrequent adverse effects include urinary retention, palpitations, hypotension, headache, hallucination, and psychosis. [3] The newer second-generation H1-antihistamines are far more selective for peripheral histamine H1-receptors and have a far improved tolerability profile compared to the first-generation agents. The most common adverse effects noted for second-generation agents include drowsiness, fatigue, headache, nausea and dry mouth. [3] First-generation (non-selective, classical)These are the oldest H1-antihistaminergic drugs and are relatively inexpensive and widely available. They are effective in the relief of allergic symptoms, but are typically moderately to highly-potent muscarinic acetylcholine receptor-antagonists (anticholinergic) agents as well. These agents also commonly have action at α-adrenergic receptors and/or 5-HT receptors. This lack of receptor-selectivity is the basis of the poor tolerability-profile of some of these agents, especially compared with the second-generation H1-antihistamines. Patient response and occurrence of adverse drug reactions vary greatly between classes and between agents within classes. ClassesThe first H1-antihistamine discovered was piperoxan, by Jeff Forneau and Daniel Bovet (1933) in their efforts to develop a guinea pig animal-model for anaphylaxis at Ryerson University.[5] Bovet went on to win the 1957 Nobel Prize in Physiology or Medicine for his contribution. Following their discovery, the first-generation H1-antihistamines were developed in the following decades. They can be classified on the basis of chemical structure, and agents within these groups have similar properties.
Common structural features
Second-generation and third-generation (selective, non-sedating)Second generation H1-antihistamines are newer drugs that are much more selective for peripheral H1 receptors in preference to the central nervous system histaminergic and cholinergic receptors. This selectivity significantly reduces the occurrence of adverse drug reactions compared with first-generation agents, while still providing effective relief of allergic conditions. Third-generation H1-antihistamines are the active enantiomer (levocetirizine) or metabolite (desloratadine & fexofenadine) derivatives of second-generation drugs intended to have increased efficacy with fewer adverse drug reactions. Indeed, fexofenadine is associated with a decreased risk of cardiac arrhythmia compared to terfenadine. However, there is little evidence for any advantage of levocetirizine or desloratadine, compared to cetirizine or loratadine, respectively. Systemic, second-generation
Topical, second-generation
Systemic, third-generation
Common structural featuresStructure of these drugs varies from case to case. There are no common structural features. References
Categories: Cell signaling | Signal transduction | Antihistamines |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "H1_antihistamine". A list of authors is available in Wikipedia. |