My watch list
my.bionity.com  
Login  

Seizure




Seizure
Classification & external resources
ICD-10 G40., I64., P90., R56.
DiseasesDB 19011
eMedicine neuro/694  neuro/415

A seizure is a temporary abnormal electro-physiologic phenomenon of the brain, resulting in abnormal synchronization of electrical neuronal activity. It can manifest as an alteration in mental state, tonic or clonic movements, convulsions, and various other psychic symptoms (such as déjà vu or jamais vu). It is caused by a temporary abnormal electrical activity of a group of brain cells. The medical syndrome of recurrent, unprovoked seizures is termed epilepsy, but some seizures may occur in people who do not have epilepsy.

The treatment of epilepsy is a subspecialty of neurology; the study of seizures is part of neuroscience.

Contents

Signs and symptoms

Seizures can cause involuntary changes in body movement or function, sensation, awareness, or behavior. A seizure can last from a few seconds to status epilepticus, a continuous seizure that will not stop without intervention. Seizure is often associated with a sudden and involuntary contraction of a group of muscles. However, a seizure can also be as subtle as marching numbness of a part of the body, a brief loss of memory, sparkling or flashes, sensing an unpleasant odor, a strange epigastric sensation or a sensation of fear. Therefore seizures are typically classified as motor, sensory, autonomic, emotional or cognitive.

In some cases, the full onset of a seizure event is preceded by some of the sensations described above. These sensations can serve as a warning to the sufferer that a full tonic-clonic seizure is about to occur. These "warning sensations" are cumulatively called an aura.[1]

Symptoms experienced by a person during a seizure depend on where in the brain the disturbance in electrical activity occurs. Recent studies show that seizures happen in sleep more often than was thought. A person having a tonic-clonic seizure may cry out, lose consciousness and fall to the ground, and convulse, often violently. A person having a complex partial seizure may appear confused or dazed and will not be able to respond to questions or direction. Some people have seizures that are not noticeable to others. Sometimes, the only clue that a person is having an absence seizure is rapid blinking or a few seconds of staring into space.

It is commonly thought among healthcare providers that many seizures, especially in children, are preceded by tachycardia that frequently persists throughout the seizure. This early increase in heart rate may supplement an aura as a physiological warning sign of an imminent seizure.

Types

Main article: Seizure types

Seizure types are organized according to whether the source of the seizure within the brain is localized (partial or focal onset seizures) or distributed (generalized seizures). Partial seizures are further divided on the extent to which consciousness is affected (simple partial seizures and complex partial seizures). If it is unaffected, then it is a simple partial seizure; otherwise it is a complex partial seizure. A partial seizure may spread within the brain - a process known as secondary generalisation. Generalized seizures are divided according to the effect on the body but all involve loss of consciousness. These include absence, myoclonic, clonic, tonic, tonic-clonic, and atonic seizures.

Following standardization proposal published in 1970, out-dated terms such as "petit mal", "grand mal", "Jacksonian", "psychomotor", and "temporal-lobe seizure" have fallen into disuse.

Diagnosis

It can be difficult to distinguish a seizure from other conditions causing collaps, abnormal movements or other seizure manifestations. A 2007 evidence-based review from the American Academy of Neurology and the American Epilepsy Society recommends an electroencephalogram (EEG, brain wave activity) and brain imaging with CT scan or MRI scan in the work-up of adults presenting with a first apparently unprovoked seizure. Blood tests, lumbar puncture or toxicology screening can be helpful in specific circumstances suggestive of an underlying cause like meningitis or drug overdose, but there is insufficient evidence to support their routine use in the work-up of an adult with an apparently unprovoked first seizure.[1]

Determining whether a seizure occurred

Differentiating a seizure from other conditions such as syncope can be difficult. In addition, 5% of patients with a positive tilt table test may have seizure-like activity that seems to be due to cerebral hypoxia.[2]

Physical examination

A small study found that finding a bite to the side of the tongue was very helpful when present[3]"

Serum prolactin level

Two meta-analyses have quantified the role of an elevated serum prolactin. The first meta-analysis found that[4]: "If a serum prolactin concentration is greater than three times the baseline when taken within one hour of syncope, then in the absence of test "modifiers":

  1. the patient is nine times more likely to have suffered a GTCS as compared with a pseudoseizure positive LR = 8.92 (95% CI (1.31 to 60.91)), SN = 0.62 (95% CI (0.40 to 0.83)), SP = 0.89 (95% CI (0.60 to 0.98))
  2. five times more likely to have suffered a GTCS as compared with non-convulsive syncope positive LR 4.60 (95% CI (1.25 to 16.90)), SN = 0.71 (95% CI (0.49 to 0.87)), SP = 0.85 (95% CI (0.55 to 0.98)). "

The second meta-analysis found:[5]

  1. "Elevated serum prolactin assay, when measured in the appropriate clinical setting at 10 to 20 minutes after a suspected event, is a useful adjunct for the differentiation of generalized tonic-clonic or complex partial seizure from psychogenic nonepileptic seizure among adults and older children (Level B)."
  2. "Serum prolactin assay does not distinguish epileptic seizures from syncope (Level B).
  3. "The use of serum PRL assay has not been established in the evaluation of status" epilepticus, repetitive seizures, and neonatal seizures (Level U)."

The serum prolactin level is less sensitive for detecting partial seizures.[6]

EEG

An isolated abnormal electrical activity recorded by an electroencephalography examination without a clinical presentation is called subclinical seizure. They may identify background epileptogenic activity, as well as help identify particular causes of seizures.

Investigation of underlying cause

Additional diagnostic methods include CT Scanning and MRI imaging or angiography. These may show structural lesions within the brain, but the majority of those with epilepsy show nothing unusual.

As seizures have a differential diagnosis, it is common for patients to be simultaneously investigated for cardiac and endocrine causes. Checking glucose levels, for example, is a mandatory action in the management of seizures as hypoglycemia may cause seizures, and failure to administer glucose would be harmful to the patient. Other causes typically considered are syncope and cardiac arrhythmias, and occasionally panic attacks and cataplexy. For more information, see non-epileptic seizures.

Management

The first aid for a seizure depends on the type of seizure occurring. Generalized seizures will cause the person to fall, which may result in injury. A tonic-clonic seizure results in violent movements that cannot and should not be suppressed. The person should never be restrained, nor should there be any attempt to put something in the mouth. Potentially sharp or dangerous objects should also be moved from the vicinity, so that the individual is not hurt. After the seizure if the person is not fully conscious and alert, they should be placed in the recovery position.

It is not necessary to call an ambulance if the person is known to have epilepsy, if the seizure is shorter than five minutes and is typical for them, if it is not immediately followed by another seizure, and if the person is uninjured. Otherwise, or if in any doubt, medical assistance should be sought.

A seizure longer than five minutes is a medical emergency. Relatives and other caregivers of those known to have epilepsy often carry medicine such as rectal diazepam or buccal midazolam in order to rapidly end the seizure.

Safety

A sudden fall can lead to broken bones and other injuries. Children who are affected by frequent drop seizures may wear helmets to protect the head during a fall.

The unusual behavior resulting from the chaotic brain activity of a seizure can be misinterpreted as an aggressive act. This may invoke a hostile response or police involvement, where there was no intention to cause harm or trouble. During a prolonged seizure, the person is defenseless and may become a victim of theft.

A seizure response dog can be trained to summon help or ensure personal safety when a seizure occurs. These are not suitable for everybody. Rarely, a dog may develop the ability to sense a seizure before it occurs.[7]

Seizures without epilepsy

Unprovoked seizures are often associated with epilepsy and related seizure disorders.

Causes of provoked seizures include:

Some medications produce an increased risk of seizures and electroconvulsive therapy (ECT) deliberately sets out to induce a seizure for the treatment of major depression. Many seizures have unknown causes.

Seizures which are provoked are not associated with epilepsy, and people who experience such seizures are normally not diagnosed with epilepsy. However, the seizures described above resemble those of epilepsy both outwardly, and on EEG testing.

Seizures can occur after a subject witnesses a traumatic event. This type of seizure is known as a psychogenic non-epileptic seizure and is related to posttraumatic stress disorder.

See also

References

  1. ^ Krumholz A, Wiebe S, Gronseth G, Shinnar S, Levisohn P, Ting T, Hopp J, Shafer P, Morris H, Seiden L, Barkley G, French J; Quality Standards Subcommittee of the American Academy of Neurology; American Epilepsy Society. Practice Parameter: evaluating an apparent unprovoked first seizure in adults (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 2007; 69(21): 1996-2007. PMID 18025394
  2. ^ Passman R, Horvath G, Thomas J, et al (2003). "Clinical spectrum and prevalence of neurologic events provoked by tilt table testing". Arch. Intern. Med. 163 (16): 1945-8. doi:10.1001/archinte.163.16.1945. PMID 12963568.
  3. ^ Benbadis SR, Wolgamuth BR, Goren H, Brener S, Fouad-Tarazi F (1995). "Value of tongue biting in the diagnosis of seizures". Arch. Intern. Med. 155 (21): 2346-9. PMID 7487261.
  4. ^ Ahmad S, Beckett MW (2004). "Value of serum prolactin in the management of syncope". Emergency medicine journal : EMJ 21 (2): e3. PMID 14988379.
  5. ^ Chen DK, So YT, Fisher RS (2005). "Use of serum prolactin in diagnosing epileptic seizures: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology". Neurology 65 (5): 668-75. doi:10.1212/01.wnl.0000178391.96957.d0. PMID 16157897.
  6. ^ Shukla G, Bhatia M, Vivekanandhan S, et al (2004). "Serum prolactin levels for differentiation of nonepileptic versus true seizures: limited utility". Epilepsy & behavior : E&B 5 (4): 517-21. doi:10.1016/j.yebeh.2004.03.004. PMID 15256189.
  7. ^ Dalziel D, Uthman B, Mcgorray S, Reep R (2003). "Seizure-alert dogs: a review and preliminary study". Seizure 12 (2): 115-20. PMID 12566236.
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Seizure". A list of authors is available in Wikipedia.
Last viewed
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE