My watch list
my.bionity.com  
Login  

Domestication of the horse



  There are a number of theories on many of the key issues regarding the domestication of the horse. Although horses appeared in Paleolithic cave art as early as 30,000 BC, these were truly wild horses and were probably hunted for meat. How and when horses became domesticated is disputed. The clearest evidence of use of the horse as a means of transport is from chariot burials dated c. 2000 BC. However, an increasing amount of evidence supports the hypothesis that horses were domesticated in the Eurasian steppes (evidently centered in Ukraine) at approximately 4000 BC.[1]

The date of the domestication of the horse depends to some degree upon the definition of "domestication." Some zoologists define "domestication" as human control over breeding, which can be detected in ancient skeletal samples by changes in the size and variability of ancient horse populations. Other researchers look at broader evidence, including skeletal and dental evidence of working activity; weapons, art, and spiritual artifacts; and lifestyle patterns of human cultures. There is also evidence that horses were kept as meat animals prior to being trained as working animals.

Attempts to date domestication by genetic study or analysis of physical remains rests on the assumption that there was a separation of the genotype or phenotype of domesticated and the wild populations. Such a separation appears to have taken place, but dates based on such methods can only produce an estimate of the latest possible date for domestication without excluding the possibility of an unknown period of earlier gene-flow between wild and domestic populations (which will occur naturally as long as the domesticated population is kept within the habitat of the wild population). Further, all modern horse populations retain the ability to revert to a feral state, and all feral horses are of domestic types; that is, they descend from ancestors that escaped from captivity.

Whether one adopts the narrower zoological definition of domestication or the broader cultural definition that rests on an array of zoological and archaeological evidence affects the time frame chosen for domestication of the horse. The date of 4000 BC is based on evidence that includes the appearance of dental pathologies associated with bitting, changes in butchering practices, changes in human economies and settlement patterns, the depiction of horses as symbols of power in artifacts, and the appearance of horse bones in human graves.[2] On the other hand, measurable changes in size and increases in variability associated with domestication occurred later, about 2500-2000 BC, as seen in horse remains found at the site of Csepel-Haros in Hungary, a settlement of the Bell Beaker culture.[3]

Regardless of the specific date of domestication, use of horses spread rapidly across Eurasia for transportation, agricultural work and warfare. Possibly as early as 3500-3000 BC, and certainly during the period 2500-2000 BC, human reliance on domesticated horses spread across Eurasia for transportation and warfare. Horses and mules in agriculture used a breastplate type harness or a yoke more suitable for oxen, which was not as efficient at utilizing the full strength of the animals as the later-invented horse collar that arose several millennia later.[4][5]

Contents

Predecessors to the domestic horse

Main articles: Evolution of the horse and wild horse

The domestic horse is Equus caballus. Its wild ancestor is traditionally designated as Equus ferus, although this is a subspecies designation, not a separate species. No genetic originals of native wild horses currently exist, other than the never-domesticated Przewalski's Horse. However, the Przewalski has 66 chromosomes, as opposed to 64 among modern domesticated horses, and their Mitochondrial DNA (mtDNA) forms a distinct cluster within the broad genetic variability of modern horses.[6] Przewalski's horses can crossbreed with domesticated horses and produce fertile offspring, so they clearly are more closely related to horses than is the Donkey. But genetic evidence suggests that modern Przewalski's horses are descended from a distinct regional gene pool in the eastern part of the Eurasian steppes, not from the same genetic group that gave rise to modern domesticated horses. Nevertheless, evidence such as the Cave paintings of Lascaux, suggests that the ancient wild horses that some researchers now label the "Tarpan subtype" probably resembled Przewalski horses in their general appearance: big heads, dun coloration (either the tan-colored "zebra dun" or "blue dun", sometimes called Grulla), thick necks, stiff upright manes, and relatively short, stout legs.[7]

The horses of the Ice Age were hunted for meat in Europe and across the Eurasian steppes and in North America by early modern humans. Numerous kill sites exist and many cave paintings in Europe tell us what they looked like.[8] Many of these Ice Age subspecies died out during the rapid climate changes associated with the end of the last Ice Age or were hunted out by humans, particularly in North America, where the horse became completely extinct.[9]

Classification based on body types and conformation, absent the availability of DNA for research, suggest that that there were roughly four basic wild prototypes, thought to have developed with adaptations to their environment prior to domestication. There are competing theories, some argue that the four prototypes were separate species or subspecies, while others suggest that the prototypes were physically different manifestations of the same species. [7] However, like Equus ferus, these animals probably were able to crossbreed with each other, thus were not completely separate species. Other theories hold that there was only one wild species and all different body types were entirely a result of selective breeding after domestication.

In any case, the most broadly accepted classification system based on body types and conformation, sometimes called the "Four Foundations Theory," describe the four base prototypes as follows:

  • The "Warmblood subspecies" or "Forest Horse" (Equus ferus silvaticus, also called the Diluvial Horse), which evolved into a later variety sometimes called Equus ferus germanicus. This prototype may have contributed to the development of the warmblood horses of northern Europe, as well as older "heavy horses" such as the Ardennais.
  • The "Draft" subspecies, a small, sturdy, heavyset animal with a heavy hair coat, arising in northern Europe, adapted to cold, damp climates, somewhat resembling both today's draft horse and even the Shetland pony
  • The "Oriental" subspecies, sometimes dubbed equus agilis, a taller, slim, refined and agile animal arising in western Asia, adapted to hot, dry climates, thought to be the progenitor of the modern Arabian horse and Akhal-Teke.
  • The "Tarpan subspecies," dun-colored, sturdy animal, the size of a large pony, adapted to the cold, dry climates of northern Asia, the predecessor to the Tarpan and possibly Przewalski's Horse as well as the domesticated Mongolian horse.[7]

Only two never-domesticated "wild" groups survived into historic times, Przewalski's horse (Equus ferus przewalski), and the Tarpan(Equus ferus ferus).[10] The Tarpan became extinct in the late 19th century, Przewalski's horse is endangered; it became extinct in the wild during the 1960s, but was re-introduced in the late 1980s to two preserves in Mongolia. Although researchers such as Marija Gimbutas theorized that the horses of the Chalcolithic period were Przewalski's, more recent genetic studies indicate that Przewalski's horse is not an ancestor to modern domesticated horses.[citation needed] However, other subspecies of Equus ferus, appear to have existed and could have been the stock from which domesticated horses are descended.[10]

Even though horse domestication was widespread in a short period of time, it is still possible that domestication began with a single culture, which passed on techniques and breeding stock. It is possible that the two "wild" subspecies remained when all other groups of once-"wild" horses died out because all others had been, perhaps, more suitable for taming by humans and the selective breeding that gave rise to the modern domestic horse.[11]

Archaeological evidence

  Evidence for the domestication of the horse comes from three kinds of sources: 1) changes in the skeletons and teeth of ancient horses; 2) changes in the geographic distribution of ancient horses, particularly the introduction of horses into regions where no wild horses had existed; and 3) archaeological sites containing artifacts, images, or evidence of changes in human behavior connected with horses.

Archaeological evidence includes horse remains interred in human graves; changes in the ages and sexes of the horses killed by humans; the appearance of horse corrals; equipment such as bits or other types of horse tack; horses themselves interred with equipment intended for use by horses, such as chariots; and depictions of horses used for riding, driving, draught work, or symbols of human power.

Few of these categories, taken alone, provide irrefutable evidence of domestication, but combined add up to a persuasive argument.

Horses interred with chariots

The least ancient, but most persuasive evidence of domestication comes from sites where horse leg bones and skulls, probably originally attached to hides, were interred with the remains of chariots in at least 16 graves of the Sintashta and Petrovka cultures. These were located in the steppes southeast of the Ural Mountains, between the upper Ural and upper Tobol Rivers, a region today divided between southern Russia and northern Kazakhstan. Petrovka was a little later than and probably grew out of Sintashta, and the two complexes together spanned about 2100-1700 BC in calibrated or true years calibration methods.[12][13] A few of these graves contained the remains of as many as eight sacrificed horses placed in, above, and beside the grave.

In all of the dated chariot graves, the heads and hooves of a pair of horses were placed in a grave that once contained a chariot. Evidence of chariots in these graves was inferred from the impressions of two spoked wheels set in grave floors 1.2-1.6m apart; in most cases the rest of the vehicle left no trace. In addition a pair of disk-shaped antler "cheekpieces," an ancient predecessor to a modern bit shank or bit ring, were placed in pairs beside each horse head-and-hoof sacrifice. The inner faces of the disks had protruding prongs or studs that would have pressed against the horse’s lips when the reins were pulled on the opposite side. Studded cheekpieces were a new and fairly severe kind of control device that appeared simultaneously with chariots.

All of the dated chariot graves contained wheel impressions, horse bones, weapons (arrow and javelin points, axes, daggers, or stone mace-heads), human skeletal remains, and cheekpieces. Because they were buried in teams of two with chariots and studded cheekpieces, the evidence is extremely persuasive that these steppe horses of 2100-1700 BC were domesticated. Shortly after the period of these burials, the expansion of the domestic horse throughout Europe was little short of explosive. In the space of possibly 500 years, there is evidence of horse-drawn chariots in Greece, Egypt, and Mesopotamia. By another 500 years, the horse-drawn chariot had spread to China.

Skeletal indicators of domestication

Some researchers do not consider an animal to be "domesticated" until it exhibits physical changes consistent with selective breeding, or at least having been born and raised entirely in captivity. Until that point, they classify captive animals as merely "tamed." Those who hold to this theory of domestication point to a change in skeletal measurements was detected among horse bones recovered from garbage pits dated about 2500 BC in eastern Hungary in Bell-Beaker sites, and in later Bronze Age sites in the Russian steppes, Spain, and eastern Europe.[3][14] Horse bones from these contexts exhibited an increase in variability, thought to reflect the survival under human care of both larger and smaller individuals than appeared in the wild; and a decrease in average size, thought to reflect penning and restriction in diet. Horse populations that showed this combination of skeletal changes probably were domesticated. This evidence suggests that horses were increasingly controlled by humans after about 2500 BC.

Botai culture

Some of the most intriguing evidence of early domestication comes from the Botai culture, found in northern Kazakhstan. The Botai culture was a culture of foragers who seem to have adopted horseback riding in order to hunt the abundant wild horses of northern Kazakhstan between 3500-3000 BC.[15][16] Botai sites had no cattle or sheep bones; the only domesticated animals, in addition to horses, were dogs. Botai settlements in this period contained between 50-150 pit houses. Garbage deposits contained tens to hundreds of thousands of discarded animal bones, 65% to 99% of which had come from horses. Earlier hunter-gatherers who lived in the same region had not hunted wild horses with such success, and lived for millennia in smaller, more shifting settlements, often containing less than 200 wild animal bones.

Entire herds of horses were slaughtered by the Botai hunters, apparently in hunting drives. The adoption of horseback riding might explain the appearance of specialized horse-hunting techniques and larger, more permanent settlements. Domesticated horses could have been adopted from neighboring herding societies in the steppes west of the Ural Mountains, where the Khvalynsk culture had herds of cattle and sheep, and perhaps had domesticated horses, as early as 4800 BC.[16]

Other researchers have argued that all of the Botai horses were wild, and that the horse-hunters of Botai hunted wild horses on foot. As evidence, they note that Zoologists have found no skeletal changes in the Botai horses that indicate domestication. And because they were hunted for food, the majority of the horse remains found in Botai-culture settlements indeed probably were wild. On the other hand, any domesticated riding horses were probably the same size as their wild cousins and cannot now be distinguished by bone measurements.[3] They also note that the age structure of the horses slaughtered at Botai represents a natural demographic profile for hunted animals, not the pattern expected if they were domesticated and selected for slaughter. [17] However, these arguments were published prior to the discovery of a corral at Krasnyi Yar and mats of horse-dung at two other Botai sites.

Bit wear

The presence of bit wear suggest that a horse was ridden or driven, and the earliest of such evidence dates to 3500-3000 BC. Because horses can be ridden and controlled without bits by using a noseband or a hackamore, and such tools are used even today, the absence of bit wear on horse teeth is not conclusive evidence against domestication, but such materials do not produce significant physiological changes nor are they apt to be preserved for millennia.

The regular use of a bit to control a horse can create wear facets or bevels on the anterior corners of the lower second premolars. The corners of the horse's mouth normally keep the bit on the "bars" of the mouth, an interdental space where there are no teeth, forward of the premolars. The bit must be manipulated by a human or the horse must move it with its tongue for it to touch the teeth. Wear can be caused by the bit abrading the front corners of the premolars if the horse grasps and releases the bit between its teeth; other wear can be created by the bit striking the vertical front edge of the lower premolars,[18][19] due to very strong pressure from a human handler.

Modern experiments showed that even organic bits of rope or leather can create significant wear facets, and also showed that facets 3mm deep or more do not appear on the premolars of wild horses.[20] However, other researchers disputed both conclusions. [17]

Wear facets of 3mm or more also were found on seven horse premolars in two sites of the Botai, Botai and Kozhai 1, dated about 3500-3000 BC.[16][21] The Botai culture premolars are the earliest reported multiple examples of this dental pathology in any archaeological site, and preceded any skeletal change indicators by 1000 years. While wear facets more than 3mm deep were discovered on the lower second premolars of a single stallion from Dereivka in Ukraine, an Eneolithic settlement dated about 4000 BC, [21]dental material from one of the worn teeth later produced a radiocarbon date of 700-200 BC, indicating that this stallion was actually deposited in a pit dug into the older Eneolithic site during the Iron Age.[16]

Dung and corrals

Soil scientists working with Sandra Olsen of the Carnegie Museum of Natural History at the Chalcolithic (also called Eneolithic, or "Copper Age") settlements of Botai and Krasnyi Yar in northern Kazakhstan found layers of horse dung, discarded in unused house pits in both settlements.[22] The collection and disposal of horse dung suggests that horses were confined in corrals or stables. An actual corral, dated to 3000-3500 BC was identified at Krasnyi Yar by a pattern of post holes for a circular fence, with the soils inside the fence yielding ten times more phosphorus than the soils outside. The phosphorus could represent the remains of manure.[23]

Geographic expansion

The appearance of horse remains in human settlements in regions where they had not previously been present is another indicator of domestication. Although images of horses appear as early as the Upper Paleolithic period in places such as the caves of Lascaux, France, suggesting that wild horses lived in regions outside of Eurasia prior to domestication and may have even been hunted by early humans, concentration of remains suggests animals being deliberately captured and contained, an indicator of domestication, at least for food, if not necessarily use as a working animal.

Around 3500-3000 BC horse bones began to appear more frequently in archaeological sites beyond their center of distribution in the Eurasian steppes and were seen in central Europe, the middle and lower Danube valley, and the North Caucasus and Transcaucasia. Evidence of horses in these areas had been rare before, and as numbers increased, larger animals also began to appear in horse remains. This expansion in range was contemporary with the Botai culture, where there are indications that horses were corralled and ridden. This does not necessarily mean that horses were first domesticated in the steppes, but the horse-hunters of the steppes certainly pursued wild horses more than in any other region. This geographic expansion is interpreted by many zoologists as an early phase in the spread of domesticated horses. [24][25][26]

European wild horses were hunted for up to 10% of the animal bones in a handful of Mesolithic and Neolithic settlements scattered across Spain, France, and the marshlands of northern Germany, but in many other parts of Europe, including Greece, the Balkans, the British Isles, and much of central Europe, horse bones do not occur or occur very rarely in Mesolithic, Neolithic or Chalcolithic sites. In contrast, wild horse bones regularly exceeded 40% of the identified animal bones in Mesolithic and Neolithic camps in the Eurasian steppes, west of the Ural Mountains.[24][27][28]

Horse bones were rare or absent in Neolithic and Chalcolithic kitchen garbage in western Turkey, Mesopotamia, most of Iran, South and Central Asia, and much of Europe.[24][25][29] While horse bones have been identified in Neolithic sites in central Turkey, all equids together totaled less than 3% of the animal bones. Within this three percent, horses were less than 10%, with 90% or more of the equids represented by onagers (Equus hemionus) or another ass-like equid that later became extinct, Equus Hydruntinus. [30] Onagers were the most common native wild equids of the Near East. They were hunted in Syria, Anatolia, Mesopotamia, Iran, and Central Asia; and domesticated asses (Equus asinus) were imported into Mesopotamia, probably from Egypt, but wild horses apparently did not live there.[31]

Other evidence of geographic expansion

Later, images of horses, identified by their short ears, flowing manes, and tails that bushed out at the dock, began to appear in artistic media in Mesopotamia during the Akkadian period, 2300-2100 BC. The word for "horse" literally translates as ass of the mountains, first appeared in Sumerian documents during the Third Dynasty of Ur, about 2100-2000 BC.[32] The kings of the Third Dynasty of Ur apparently fed horses to lions for royal entertainment, perhaps indicating that horses were still regarded as more exotic than useful, but King Shulgi, about 2050 BC, compared himself to “a horse of the highway that swishes its tail”, and one image from his reign showed a man apparently riding a horse at full gallop[33]Horses were imported into Mesopotamia and the lowland Near East in larger numbers after 2000 BC in connection with the beginning of chariot warfare.

A further expansion, into the lowland Near East and northwestern China, also happened around 2000 BC, again apparently in conjunction with the chariot. Although ‘’Equus’’ bones of uncertain species are found in some Late Neolithic sites in China dated before 2000 BC, ‘’Equus caballus’’ or ‘’Equus ferus’’ bones first appeared in multiple sites and in significant numbers in sites of the Qijia and Siba cultures, 2000-1600 BC, in Gansu and the northwestern provinces of China.[34] The Qijia culture was in contact with cultures of the Eurasian steppes, as shown through similarities between Qijia and Late Bronze Age steppe metallurgy, so it was probably through these contacts that domesticated horses first became frequent in northwestern China.

Horses images as symbols of power

About 4200-4000 BC, more than 500 years before the geographic expansion evidenced by the presence of horse bones, new kinds of graves, named after a grave at Suvorovo, appeared north of the Danube delta in the coastal steppes of Ukraine near Izmail. Suvorovo graves were similar to and probably derived from earlier funeral traditions in the steppes around the Dnieper River. Some Suvorovo graves contained polished stone mace-heads shaped like horse heads and horse tooth beads.[35] Earlier steppe graves also had contained polished stone mace-heads, some of them carved in the shape of animal heads.[36] Settlements in the steppes contemporary with Suvorovo, such as Sredni Stog II and Dereivka on the Dnieper River, contained 12%-52% horse bones.[37]

When Suvorovo graves appeared in the Danube delta grasslands, horse-head maces also appeared in some of the indigenous farming towns of the Tripolye and Gumelnitsa cultures in present-day Romania and Moldova, near the Suvorovo graves.[38] These agricultural cultures had not previously used polished-stone maces, and horse bones were rare or absent in their settlement sites. Probably their horse-head maces came from the Suvorovo immigrants. The Suvorovo people in turn acquired many copper ornaments from the Tripolye and Gumelnitsa towns. After this episode of contact and trade, but still during the period 4200-4000 BC, about 600 agricultural towns in the Balkans and the lower Danube valley, some of which had been occupied for 2000 years, were abandoned.[39] Copper mining ceased in the Balkan copper mines,[40] and the cultural traditions associated with the agricultural towns were terminated in the Balkans and the lower Danube valley. This collapse of "Old Europe" has been attributed to the immigration of mounted Indo-European warriors.[41] The collapse could have been caused by intensified warfare, for which there is some evidence; and warfare could have been worsened by mounted raiding; and the horse-head maces have been interpreted as indicating the introduction of domesticated horses and riding just before the collapse.

However, mounted raiding is just one possible explanation for this complex event. Environmental deterioration, ecological degradation from millennia of farming, and the exhaustion of easily mined oxide copper ores also are cited as causal factors.[42]

Artifacts

Perforated antler objects discovered at Dereivka and other sites contemporary with Suvorovo have been identified as cheekpieces or ‘’psalia’’ for horse bits.[43]. This identification is no longer widely accepted, as the objects in question have not been found associated with horse bones, and could have had a variety of other functions.[44] However, through studies of microscopic wear, it has been extablished that many of the bone tools at Botai were used to smooth rawhide thongs, and rawhide thongs might have been used to manufacture of rawhide cords and ropes, useful for horse tack.[45] Similar bone thong-smoothers are known from many other steppe settlements, but it cannot be known how the thongs were used. The oldest artifacts clearly identified as horse tack—bits, bridles, cheekpieces, or any other kind of horse gear—are the antler disk-shaped cheekpieces associated with the invention of the chariot, at the Sintashta-Petrovka sites.

Horses interred in human graves

The oldest possible archaeological indicator of a changed relationship between horses and humans is the appearance about 4800-4400 BC of horse bones and carved images of horses in Chalcolithic graves of the early Khvalynsk culture and the Samara culture in the middle Volga region of Russia. At the Khvalynsk cemetery near the town of Khvalynsk, 158 graves of this period were excavated. Of these, 26 graves contained parts of sacrificed domestic animals, and additional sacrifices occurred in ritual deposits on the original ground surface above the graves. Ten graves contained parts of lower horse legs; two of these also contained the bones of domesticated cattle and sheep. At least 52 domesticated sheep or goats, 23 domesticated cattle, and 11 horses were sacrificed at Khvalynsk. The inclusion of horses with cattle and sheep and the exclusion of obviously wild animals together suggest that horses were categorized symbolically with domesticated animals.[citation needed]

At S’yezzhe, a contemporary cemetery of the Samara culture, parts of two horses were placed above a group of human graves. The pair of horses here was represented by the head and hooves, probably originally attached to hides. The same ritual—using the hide with the head and lower leg bones as a symbol for the whole animal—was used for many domesticated cattle and sheep sacrifices at Khvalynsk. Horse images carved from bone were placed in the above-ground ochre deposit at S’yezzhe and occurred at several other sites of the same period in the middle and lower Volga region. Together these archaeological clues suggest that horses had a symbolic importance in the Khvalynsk and Samara cultures that they had lacked earlier, and that they were associated with humans, domesticated cattle, and domesticated sheep. Thus, the earliest phase in the domestication of the horse might have begun during the period 4800-4400 BC.[citation needed]

Genetic evidence

A comparative study of mitochondrial DNA (mtDNA) from living and fossil horses, conducted by C. Vila and other evolutionary biologists at Uppsala University in Sweden studied the mitochondrial DNA from 191 pedigreed horses,[46] including examples of historical English and Swedish breeds considered "primitive," and one breed derived from animals imported to Iceland by the Vikings. They also obtained DNA samples from the Przewalski's horse. They compared these samples with fossil DNA from leg bones of horses that have been preserved in the Alaskan permafrost for more than 12,000 years and with other samples from 1000- to 2000-year-old archaeological sites in southern Sweden and Estonia. Their studies were largely confirmed with some modifications by other researchers.[6] This data indicated that at least 77 different ancestral mares, divided into 17 distinct lineages, were required to account for the genetic variability in modern mares of Equus caballus.[citation needed] The results apply only to mare lines because mtDNA is inherited only from mare to filly and is not influenced by the genes of the stallion.

These analyses showed that modern domesticated mares have almost as much genetic variation as fossil wild mares. In contrast, similar analyses of mitochondrial DNA had shown that modern individuals from cattle, sheep, water buffalo, and pig breeds are much less genetically diverse than their ancient forebears. Thus, it appears that a large number of wild lineages were involved in the equine matriline most recent common ancestor (mt-mrca) of domesticated horses, many more than in any other domestic mammal studied to date. This probably means either that mares were domesticated in many different places or that the gene pool of the domesticated population was continuously refreshed by the capture of wild mares.[46][6]

On the other hand, the patriline (Y-mrca) of modern domestic horses shows greater homogeneity. Genes located on the Y chromosome, which is inherited only from sire to male offspring, show much less variation in modern domestic horses.[47] This probably means that relatively few stallions were domesticated, and that the male offspring of unions between wild stallions and domestic mares were not as frequently retained as breeding stock. In any case, the patrilineal most recent common ancestor seems to have emerged more recently than the matrilineal most recent common ancestor.[47] This parallels human genetics, where "Y-Adam" is considerably younger than "mt-Eve".

Methods of domestication

  Equidae died out in the western hemisphere at the end of the last Ice Age. A question raised is why and how horses avoided this fate on the Eurasian continent. It has been theorized that domestication saved the species.[48] While the environmental conditions for equine survival in Europe were somewhat more favorable in Eurasia than in the Americas, the same stressors that led to extinction for the Mammoth did have an impact on horses, Thus, some time after 8000 BC, the approximate date of extinction in the Americas, humans in Eurasia may have begin to keep horses as a livestock food source, and by keeping them in captivity, may have helped to preserve the species.[48] Horses also fit the six core criteria for livestock domestication, and thus, it could be argued, "chose" to live in close proximity to humans.[11]

One model of horse domestication starts with individual foals being kept as pets while the adult horses were slaughtered for meat. Foals are relatively small and easy to handle. Horses behave as herd animals and need companionship to thrive. Both historic and modern data shows that foals can and will bond to humans other domestic animals to meet their social needs. Thus domestication may have started with young horses being repeatedly made into pets over time, preceding the great discovery that these pets could be ridden or otherwise put to work.

However, there is a dispute over what domesticated means. One theory suggests that domestication must include physiological changes associated with being selectively bred in captivity, and not merely "tamed." It has been noted that traditional peoples worldwide (both hunter-gatherers and horticulturists) routinely tame individuals from wild species, typically by hand-rearing infants whose parents have been killed, and these animals are not necessarily "domesticated."[citation needed]

On the other hand, some researchers look to examples from historical times in order to hypothesize how domestication occurred. For example, while Native American cultures captured and rode horses from the 16th century on, most tribes did not exert significant control over their breeding, thus their horses developed a genotype and phenotype adapted to the uses and climatological conditions in which they were kept, making them more of a landrace than a planned breed as defined by modern standards, but nonetheless "domesticated."

Driving versus riding

A difficult question is if domesticated horses were first ridden or driven. While the most unequivocal evidence shows horses first being used to pull chariots in warfare, there is strong, though indirect, evidence for riding occurring first, particularly by the Botai. Bit wear may correlate to riding, though, as the modern hackamore demonstrates, horses can be ridden without a bit by using rope and other evanescent materials to make equipment that fastens around the nose. So the absence of unequivocal evidence of early riding in the record does not settle the question.

Thus, on one hand, logic suggests that horses would have been ridden long before they were driven. But it is also far more difficult to gather evidence of this, as the materials required for riding—simple hackamores or blankets--would not survive as artifacts, and other than tooth wear from a bit, the skeletal changes in an animal that was ridden would not necessarily be particularly noticeable. Direct evidence of horses being driven is much stronger.[49]

On the other hand, others argue that evidence of bit wear does not necessarily correlate to riding. Some theorists speculate that a horse could have been controlled from the ground by placing a bit in the mouth, connected to a lead rope, and leading the animal while pulling a primitive wagon or plow. Since oxen were usually relegated to this duty in Mesopotamia, it is possible that early plows might have been attempted with the horse, and a bit may indeed have been significant as part of agrarian development rather than as warfare technology.

Horses in ancient warfare

Main Article: Horses in warfare

While riding may have been practiced during the 4th and 3rd millennia BC, and the disappearance of "Old European" settlements may have correlated to attacks horseback-mounted warriers, the clearest impact by horses on ancient warfare was by pulling chariots, introduced circa 2000 BC.

Horses in the Bronze Age were relatively small by modern standards, which led some theorists to believe the ancient horses were too small to be ridden and so must have been driven.[citation needed] Herodotus' description of the Sigynnae, a steppe people who bred horses too small to ride but extremely efficient at drawing chariots, illustrates this stage. However, as horses remained generally smaller than modern equines well into the Middle Ages,[50] this theory is highly questionable.

The Iron Age in Mesopotamia saw the rise of mounted cavalry as a tool of war, as evidenced by the notable successes of mounted archer tactics used by various invading equestrian nomads such as the Parthians. Over time, the chariot gradually become obsolete.

The horse of the Iron Age was still relatively small, perhaps 12.2 to 14.2 hands high (1.27 to 1.47 meters, measured at the withers.) This was shorter overall average height than modern riding horses, which range from 14.2 to 17.2 hh (1.47 to 1.78 meters). However, small horses were used successfully as light cavalry for many centuries. For example, Fell ponies, believed to be descended from Roman cavalry horses, are comfortably able to carry fully grown adults (although with rather limited ground clearance) at an average height of 13.2 hands (1.37 m). Likewise, the Arabian horse is noted for a short back and dense bone, and the successes of the Muslims against the heavy mounted knights of Europe demonstrated that a 14.2 hand horse can easily carry a full-grown human adult into battle.

Mounted warriors such as the Scythians, Huns and Vandals of late Roman antiquity, the Mongols who invaded eastern Europe in the 7th century through 14th centuries AD, the Muslim warriors of the 8th through 14th centuries AD, and the American Indians in the 16th through 19th centuries each demonstrated effective forms of light cavalry.

See also

References

  1. ^ "A Chronological History of Humans and Their Relationship With the Horse" from International Museum of the Horse, web site, accessed February 8, 2007
  2. ^ Anthony, David W. The Horse, the Wheel, and Language. How Bronze Age Riders from the Eurasian Steppes Shaped the Modern World, Princeton, NJ: Princeton University Press, 2007.
  3. ^ a b c Benecke, Norbert, and Angela von den Dreisch, 2003, “Horse exploitation in the Kazakh steppes during the Eneolithic and Bronze Age,” Prehistoric Steppe Adaptation and the Horse, Levine, Marsha, Colin Renfrew and Katie Boyle, ed.; Cambridge: McDonald Institute, pp. 69-82.
  4. ^ Needham, Joseph (1986). Science and Civilization in China: Volume 4, Physics and Physical Technology, Part 2, Mechanical Engineering. Taipei: Caves Books Ltd.
  5. ^ Clutton-Brock, Juliet (1992) Horse Power: A History of the Horse and the Donkey in Human Societies; Cambridge, Mass., Harvard University Press, p. 138
  6. ^ a b c Jansen, Thomas, Peter Forster, Marsha A. Levine, et. al. (2002). "Mitochondrial DNA and the origins of the domestic horse," Proceedings of the National Academy of Sciences 99 (16): 10905-10910.
  7. ^ a b c Bennett, Deb. Conquerors: The Roots of New World Horsemanship. Amigo Publications Inc; 1st edition 1998. ISBN 0-9658533-0-6
  8. ^ Olsen, Sandra L. “Horse Hunters of the Ice Age.” Horses Through Time. Boulder: Roberts Rinehart Publishers, 1996.
  9. ^ R.D.E. MacPhee, ed., Extinctions in Near Time: Causes, Contexts, and Consequences, New York: Kluwer Press, 1999.
  10. ^ a b Colin Groves, 1986, "The taxonomy, distribution, and adaptations of recent Equids," In Richard H. Meadow and Hans-Peter Uerpmann, eds., Equids in the Ancient World, volume I, pp. 11-65, Wiesbaden: Ludwig Reichert Verlag.
  11. ^ a b Diamond, Jared. Guns, Germs and Steel: The Fates of Human Societies Norton & Company, 1999. ISBN-10: 0393317552, ISBN-13: 978-0393317558
  12. ^ Kuznetsov, P.F., 2006, “The emergence of Bronze Age chariots in eastern Europe,” Antiquity 80:638-645
  13. ^ Anthony 2007: Table 15:1
  14. ^ Bökönyi, Sandor, 1978, “The earliest waves of domestic horses in east Europe," Journal of Indo-European Studies 6(1/2):17-76.
  15. ^ Olsen, Sandra, 2003, “The exploitation of horses at Botai, Kazakhstan,” Prehistoric Steppe Adaptation and the Horse, edited by Marsha Levine, Colin Renfrew, and Katie Boyle, pp. 83-104, McDonald Institute Monographs, Cambridge
  16. ^ a b c d Anthony, David W. and Dorcas Brown, 2000, “Eneolithic horse exploitation in the Eurasian steppes: diet, ritual and riding," Antiquity 74: 75-86.
  17. ^ a b Levine, M. A.,1999, “The Origins of Horse Husbandry on the Eurasian Steppe,” In Late Prehistoric Exploitation of the Eurasian Steppe, edited by Marsha Levine, Yuri Rassamakin, Aleksandr Kislenko, and Nataliya Tatarintseva, pp. 5-58. McDonald Institute Monographs, Cambridge.
  18. ^ Brown, Dorcas and David W. Anthony, 1998, “Bit Wear, Horseback Riding and the Botai site in Kazakstan,” The Journal of Archaeological Science, 25:331-347
  19. ^ Bendry, Robin, 2007, “New methods for the identification of evidence for bitting on horse remains from archaeological sites,” Journal of Archaeological Science 34:1036-1050
  20. ^ Anthony, David W., Dorcas R. Brown, and Christian George, 2006, “Early horseback riding and warfare: the importance of the magpie around the neck,” In Horses and Humans: The Evolution of the Equine-Human Relationship edited by Olsen, Sandra, Susan Grant, Alice Choyke, and Laszlo Bartosiewicz 2006, pp. 137-156. Oxford: British Archaeological Reports International Series 1560
  21. ^ a b Anthony, David W., Dimitri Telegin, & D. Brown, 1991, “The origin of horseback riding,” Scientific American 265(6): 94-100.
  22. ^ French, Charly and Maria Kousoulakou, 2003, “Geomorphological and micro-morphological investigations of paleosols, valley sediments, and a sunken-floored dwelling at Botai, Kazakstan,” in Ancient Interactions: East and West in Eurasia, edited by Katie Boyle, Colin Renfrew, and Marsha Levine, pp.105-114, McDonald Institute Monographs, Cambridge.
  23. ^ Olsen, Sandra, 2006, “Geochemical evidence of possible horse domestication at the Copper Age Botai settlement of Krasnyi Yar, Kazakhstan,” paper delivered at the Geological Society of America Annual Meeting, 23 October 2006
  24. ^ a b c Benecke, Norbert, 1994, Archäologische Studien zur Entwicklung der Haustierhaltung in Mitteleuropa und Sόdskandinavien von Anfängen bis zum Ausgehenden Mittelalter, Berlin: Akademie Verlag
  25. ^ a b Bökönyi, Sandor, 1991, “Late Chalcolithic horses in Anatolia,” in Equids in the Ancient World, vol. II, edited by Richard Meadow and Hans-Peter Uerpmann, pp.123-131,
  26. ^ "Bökönyi, 1978
  27. ^ Benecke, Norbert, 1997, “Archaeozoological studies on the transition from the Mesolithic to the Neolithic in the North Pontic region”, Anthropozoologica 25-26:631-641
  28. ^ Uerpmann, Hans-Peter, 1990, "Die Domestikation des Pferdes im Chalcolithikum West- und Mitteleuropas," Madrider Mitteilungen 31: 109-153.
  29. ^ Wiesbaden: Ludwig Reichert; Meadow, Richard H., and Ajita Patel, 1997, “A comment on ‘Horse Remains from Surkotada’ by Sándor Bökönyi,” South Asian Studies 13: 308-315.
  30. ^ Russell, Nerissa and Louise Martin, 2005, “Çatalhöyük Mammal Remains,” in Hodder, Ian, ed., Inhabiting Çatalhöyük: Reports From the 1995-1999 Seasons, Volume 4, pp. 33-98, McDonald Institute for Archaeological Research, Cambridge.
  31. ^ Oates, Joan, 2003, “A note on the early evidence for horse and the riding of equids in Western Asia,” in Prehistoric Steppe Adaptation and the Horse, edited by Marsha Levine, Colin Renfrew and Katie Boyle, pp. 115-125, Cambridge: McDonald Institute.
  32. ^ Oates 2003; Drews, Robert, 2004, Early Riders, London: Routledge.
  33. ^ Owen, David I., 1991, “The first equestrian: an Ur III glyptic scene,” Acta Sumerologica 13: 259-273.
  34. ^ Linduff, Katheryn M., “A walk on the wild side: late Shang appropriation of horses in China,” in Prehistoric Steppe Adaptation and the Horse, edited by Marsha Levine, Colin Renfrew, and Katie Boyle, pp. 139-162, McDonald Institute Monographs, Cambridge
  35. ^ Dergachev, Valentin, 1999, “Cultural-historical dialogue between the Balkans and Eastern Europe, Neolithic-Bronze Age,” Thraco-Dacica (Bucureşti) 20(1-2):33-78.
  36. ^ Kuzmina E.E., 2003, “Origins of pastoralism in the Eurasian steppes,” in Prehistoric Steppe Adaptation and the Horse, edited by Marsha Levine, Colin Renfrew and Katie Boyle, pp. 203-232, MacDonald Institute for Archaeological Research, Cambridge.
  37. ^ Telegin, D.Y., 1986, Dereivka: a Settlement and Cemetery of Copper Age Horse Keepers on the Middle Dnieper, edited by J. P. Mallory, translated by V.K. Pyatkovskiy, Oxford: British Archaeological Reports, I.S., vol. 287.
  38. ^ Dergachev, Valentin A., 2003, “Two studies in defense of the migration concept,” in Ancient Interactions: East and West in Eurasia, edited by Katie Boyle, Colin Renfrew, and Marsha Levine, pp. 93-112, Cambridge: McDonald Institute Monographs.
  39. ^ Todorova, Henrietta, 1995, “The Neolithic, Eneolithic, and Transitional in Bulgarian Prehistory”, in Prehistoric Bulgaria, edited by Douglass W. Bailey and Ivan Panayotov, pp. 79-98, Madison WI: Monographs in World Archaeology 22.
  40. ^ Pernicka, Ernst, F. Begemann, S. Schmitt-Strecker, H. Todorova, and I. Kuleff, 1997, “Prehistoric copper in Bulgaria,” Eurasia Antiqua 3: 41-179
  41. ^ Gimbutas, Marija, 1991, The Civilization of the Goddess San Francisco: Harper.
  42. ^ Todorova 1995; Anthony 2007
  43. ^ Kuzmina 2003
  44. ^ Dietz, Ute Luise, 1992, “Zur frage vorbronzezeitlicher Trensenbelege in Europa,” Germania 70(1):17-36.
  45. ^ Olsen 2003
  46. ^ a b Vilà, C, Leonard, JA, Götherström, A, Marklund, S, Sandberg, K, Lidén, K, Wayne, RK, and Ellegren, H. (2001). "Widespread origins of domestic horse lineages." Science 291: 474-477.
  47. ^ a b Lindgren, G., Backström, N., Swinburne, J., Hellborg, L., Einarsson, A., Sandberg, K., Vilà, C., Binns, M. & Ellegren, H. (2004) "Limited number of patrilines in horse domestication." Nature Genetics 36: 335-336.
  48. ^ a b Budiansky, Stephen. The Nature of Horses. Free Press, 1997. ISBN 0-684-82768-9
  49. ^ "Early Attempts at Riding: The Soft Bit and Bridle," web site accessed October 26, 2007
  50. ^ Gravett, Christopher (2002) English Medieval Knight 1300-1400. Oxford: Osprey Publishing ISBN 1-84176-145-1


 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Domestication_of_the_horse". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE