To use all functions of this page, please activate cookies in your browser.
my.bionity.com
With an accout for my.bionity.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
DNA field-effect transistorA DNA field-effect transistor (DNAFET) is a field-effect transistor which uses the field-effect due to the partial charges of DNA molecules to function as a biosensor. The structure of DNAFETs is similar to that of MOSFETs with the exception of the gate structure which, in DNAFETs, is replaced by a layer of immobilized ssDNA (single-stranded DNA) molecules which act as surface receptors. When complementary DNA strands hybridize to the receptors, the charge distribution near the surface changes, which in turn modulates current transport through the semiconductor transducer. Additional recommended knowledgeArrays of DNAFETs can be used for detecting single nucleotide polymorphisms (causing many hereditary diseases) and for DNA sequencing. Their main advantage compared to optical detection methods in common use today is that they do not require labeling of molecules. Furthermore they work continuously and (near) real-time. DNAFETs are highly selective since only specific binding modulates charge transport. References
|
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "DNA_field-effect_transistor". A list of authors is available in Wikipedia. |