My watch list
my.bionity.com  
Login  

DNA end



DNA end or sticky end refers to the properties of the end of a molecule of DNA. The concept is important in molecular biology, especially in cloning or when subcloning insert DNA into vector DNA. All the terms can also be used in reference to RNA.

Contents

Single-stranded DNA molecules

A single-stranded non-circular DNA molecule has two non-identical ends, the 3' end and the 5' end (usually pronounced "three prime end" and "five prime end". The numbers refer to the numbering of carbon atoms in the deoxyribose, which is a sugar forming an important part of the backbone of the DNA molecule. In the backbone of DNA the 5' carbon of one deoxyribose is linked to the 3' carbon of another by a phosphate group. The 5' carbon of this deoxyribose is again linked to the 3' carbon of the next, and so forth.

Variations in double-stranded molecules

When a molecule of DNA is double stranded, as DNA usually is, the two strands run in opposite directions. Therefore, one end of the molecule will have the 3' end of strand 1 and the 5' end of strand 2, and vice versa in the other end. However, the fact that the molecule is two stranded allows numerous different variations.

Blunt ends

The simplest DNA end of a double stranded molecule is called a blunt end. In a blunt-ended molecule both strands terminate in a base pair. Blunt ends are not always desired in biotechnology since when using a DNA ligase to join two molecules into one, the yield is significantly lower with blunt ends. When performing subcloning, it also has the disadvantage of potentially inserting the insert DNA in the opposite orientation desired. On the other hand, blunt ends are always compatible with each other. Here is an example of a small piece of blunt-ended DNA:

5'-CTGATCTGACTGATGCGTATGCTAGT-3'
3'-GACTAGACTGACTACGCATACGATCA-5'

Overhangs and sticky ends

Non-blunt ends are created by various overhangs. An overhang is a stretch of unpaired nucleotides in the end of a DNA molecule. These unpaired nucleotides can be in either strand, creating either 3' or 5' overhangs.

The simplest case of an overhang is a single nucleotide. This is most often adenosine and is created as a 3' overhang by some DNA polymerases. Most commonly this is used in cloning PCR products created by such an enzyme. The product is joined with a linear DNA molecule with 5' thymine overhangs. Since adenine and thymine form a base pair, this facilitates the joining of the two molecules by a ligase, yielding a circular molecule. Here is an example of an A-overhang:

5'-ATCTGACTA-3'
3'-TAGACTGA-5'

Longer overhangs are called cohesive ends or sticky ends. They are most often created by restriction endonucleases when they cut DNA. Very often they cut the two DNA strands four base pairs from each other, creating a four-base 3' overhang in the other molecule and a complementary 5' overhang in the other. These ends are called cohesive since they are easily joined back together by a ligase. Also, since different restriction endonucleases usually create different overhangs, it is possible cut a piece of DNA with two different enzymes and the join it with another DNA molecule with ends created by the same enzymes. Since the overhangs have to be complementary in order for the ligase to work, the two molecules can only join in one orientation. This is often highly desirable in molecular biology.

For example, these two "sticky" ends are compatible:

5'-ATCTGACT      + GATGCGTATGCT-3'
3'-TAGACTGACTACG        CATACGA-5'

They can form complementary base pairs in the overhang region:

           GATGCGTATGCT-3'
5'-ATCTGACT     CATACGA-5'
3'-TAGACTGACTACG

References

Sambrook, Joseph; David Russell (2001). Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.

     
    This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "DNA_end". A list of authors is available in Wikipedia.
    Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE