My watch list
my.bionity.com  
Login  

Bird flight



  Flight is the main mode of locomotion used by most of the world's bird species. It assists birds while feeding, breeding and avoiding predators.

Contents

Evolution and purpose of bird flight

The origin of bird flight is unclear, even though most paleontologists agree that birds evolved from small theropod dinosaurs. It seems likely that they evolved from species that lived on the ground, with flight developing after the evolution of feathers. It seems likely in this case that flight evolved as a result of benefits in the pursuit of small airborne prey items (such as insects), possibly subsequently becoming useful as a predator-avoiding behavior.

One theory, called the arboreal hypothesis, suggests that birds like the archaeopteryx used their claws to clamber up trees and glided off from the tops.[1] Others have suggested the cursorial hypothesis, in which the early birds are hypothesised to have run with outstretched wings to help them take off.[2] Many of the Archaeopteryx fossils come from marine sediment and it has been suggested given the habitat that wings may have helped the birds run over water in the manner of the Jesus Christ Lizards or basilisks.[3] Another hypothesis based on observation of young Chukar chicks is the idea that birds may have been aided in running up inclines using their wings.[4]

Flight is more energetically expensive in larger birds, and many of the largest species fly by soaring and gliding (without flapping their wings) most of the time. Many physiological adaptations have evolved that make flight more efficient.

Birds use flight to obtain prey on the wing, for foraging, to commute to feeding grounds, and to migrate between the seasons. Flight's importance in avoiding predators (and its extreme demand for energy) can be shown in the frequency with which it is lost when birds reach isolated oceanic islands that lack ground-based predators. It is also used by some species to display during the breeding season and to reach safe isolated places for nesting.

Basic mechanics of bird flight

 

The fundamentals of bird flight are similar to those of aircraft. Lift force is produced by the action of air flow on the wing, which is an airfoil. The lift force occurs because the air has a lower pressure just above the wing and higher pressure below.

When gliding, both birds and gliders obtain both a vertical and a forward force from their wings. This is possible because the lift force is generated at right angles to the air flow, which in level flight comes from slightly below the wing. The lift force therefore has a forward component. (Weight always acts vertically downwards and so cannot provide a forward force. Without a forward component, a gliding bird would merely descend vertically, exactly as a parachute does).  

When a bird flaps, as opposed to gliding, its wings continue to develop lift as before, but they also create an additional forward and upward force, thrust, to counteract its weight and drag. Flapping involves two stages: the down-stroke, which provides the majority of the thrust, and the up-stroke, which can also (depending on the bird's wings) provide some upward force. At each up-stroke the wing is slightly folded inwards to reduce upward resistance. Birds change the angle of attack between the up-stroke and the down-stroke of their wings. During the down-stroke the angle of attack is increased, and is decreased during the up-stroke.

There are three major forces that impede a bird's aerial flight: frictional drag (caused by the friction of air and body surfaces), form drag (due to frontal area of the bird, also known as pressure drag), and lift-induced drag (caused by the wingtip vortices).

The wing

The bird's forelimbs, the wings, are the key to bird flight. Each wing has a central vane to hit the wind, composed of three limb bones, the humerus, ulna and radius. The hand, or manus, which ancestrally was composed of five digits, is reduced to three digits (digit II, III and IV), the purpose of which is to serve as an anchor for the primaries, one of two groups of flight feathers responsible for the wing's airfoil shape. The other set of flight feathers, which are behind the carpal joint on the ulna, are called the secondaries. The remaining feathers on the wing are known as coverts, of which there are three sets. The wing sometimes has vestigial claws. In most species these are lost by the time the bird is adult (such as the highly visible ones used for active climbing by Hoatzin chicks), but claws are retained into adulthood by the Secretary Bird, screamers, finfoots, ostriches, several swifts and numerous others, as a local trait, in a few specimens. The claws of the Jurassic therapod-like Archaeopteryx are quite similar to those of the Hoatzin nestlings.

Wing shape and flight

  The shape of the wing is an important factor in determining the types of flight of which the bird is capable. Different shapes correspond to different trade-offs between beneficial characteristics, such as speed, low energy use, and maneuverability. The planform of the wing (the shape of the wing as seen from below) can be described in terms of two parameters, aspect ratio and wing loading. Aspect ratio is the ratio of wing breadth to the mean of its chord, or mean wingspan divided by wing area. Wing loading is the ratio of weight to wing area.

Most kinds of bird wing can be grouped into four types, with some falling between two of these types. These types of wings are elliptical wings, high speed wings, high aspect ratio wings and soaring wings with slots.  

Elliptical wings

Elliptical wings are short and rounded, having a low aspect ratio, allowing for tight maneuvering in confined spaces such as might be found in dense vegetation. As such they are common in forest raptors (such as Accipiter hawks), and many passerines, particularly non-migratory ones (migratory species have longer wings). They are also common in species that use a rapid take off to evade predators, such as pheasants and partridges.

High speed wings

High speed wings are short, pointed wings that when combined with a heavy wing loading and rapid wingbeats provide an energetically expensive high speed. This type of flight is used by the bird with the fastest wing speed, the peregrine falcon, as well as by most of the ducks. The same wing shape is used by the auks for a different purpose; auks use their wings to "fly" underwater. The Peregrine Falcon has the highest recorded dive speed of 175 mph (282 km/h). The fastest straight, powered flight is the Spine-tailed Swift at 105 mph (170 km/h).

High aspect ratio wings

  High aspect ratio wings, which usually have low wing loading and are far longer than they are wide, are used for slower flight, almost hovering (as used by kestrels, terns and nightjars) or alternatively by birds that specialize in soaring and gliding flight, particularly that used by seabirds, dynamic soaring, which use different wind speeds at different heights (wind shear) above the waves in the ocean to provide lift.

Soaring wings with deep slots

These are the wings favored by the larger species of inland birds, such as eagles, vultures, pelicans, and storks. The slots at the end of the wings, between the primaries, reduce the turbulence at the tips, whilst the shorter size of the wings aids in takeoff (high aspect ratio wings require a long taxi in order to get airborne).

Hovering

Hovering is a demanding but useful ability used by several species of birds (and specialized in by one family). Hovering, literally generating lift through flapping alone rather than as a product of thrust, demands a lot of energy. This means that it is confined to smaller birds; the largest bird able to truly hover is the pied kingfisher, although larger birds can hover for small periods of time. Larger birds that hover do so by flying into a headwind, allowing them to utilize thrust to fly slowly but remain stationary to the ground (or water). Kestrels, terns and even hawks use this windhovering.  

Most birds that hover have high aspect ratio wings that are suited to low speed flying. One major exception to this are the hummingbirds, which are among the most accomplished hoverers of all the birds. Hummingbird flight is different from other bird flight in that the wing is extended throughout the whole stroke, the stroke being a symmetrical figure of eight, with the wing being an airfoil in both the up- and down-stroke. Some hummingbirds can beat their wings 52 times a second, though others do so less frequently.

Take-off and landing

Take-off can be one of the most energetically demanding aspects of flight, as the bird needs to generate enough airflow under the wing to create lift. In small birds a jump up will suffice, while for larger birds this is simply not possible. In this situation, birds need to take a run up in order to generate the airflow to take off. Large birds often simplify take off by facing into the wind, and, if they can, perching on a branch or cliff so that all they need to do is drop off into the air.

Landing is also a problem for many large birds with high airspeeds. This problem is dealt with in some species by aiming for a point below the intended landing area (such as a nest on a cliff) then pulling up beforehand. If timed correctly, the airspeed once the target is reached is virtually nil. Landing on water is simpler, and the larger waterfowl species prefer to do so whenever possible. In order to lose height rapidly prior to landing, some large birds such as geese indulge in a rapid alternating series of sideslips in a maneuver termed as whiffling.

Adaptations for flight

 

The most obvious adaptation to flight is the wing, but because flight is so energetically demanding birds have evolved several other adaptations to improve efficiency when flying. Birds' bodies are streamlined to help overcome air-resistance. Also, the bird skeleton is hollow to reduce weight, and many unnecessary bones have been lost (such as the bony tail of the early bird Archaeopteryx), along with the toothed jaw of early birds, which has been replaced with a lightweight beak. The skeleton's breastbone has also adapted into a large keel, suitable for the attachment of large, powerful flight muscles. The vanes of the feathers have hooklets called barbules that zip them together, giving the feathers the strength needed to hold the airfoil (these are often lost in flightless birds).

The large amounts of energy required for flight have led to the evolution of a unidirectional pulmonary system to provide the large quantities of oxygen required for their high respiration rates. This high metabolic rate produces large quantities of radicals in the cells that can damage DNA and lead to tumours. Birds, however, do not suffer from an otherwise expected shortened lifespan as their cells have evolved a more efficient antioxidant system than those found in other animals.

See also

Notes

  1. ^ Feduccia, A. 1996. The Origin and Evolution of Birds, First Edition. Yale University Press, New Haven.
  2. ^ Burgers, P. & L. M. Chiappe 1999. The wing of Archaeopteryx as a primary thrust generator. Nature 399:60-62 [1]
  3. ^ Videler, J.J. 2005: Avian Flight. Oxford University. Press, Oxford.
  4. ^ Dial, K. P. 2003 Wing-Assisted Incline Running and the Evolution of Flight. Science 299(5605):402 - 404 [2]

References

  • Del Hoyo, Josep, et al. Handbook of Birds of the World Vol 1. 1992. Barcelona: Lynx Edicions, ISBN 84-87334-10-5.
  • Brooke, Michael and Tim Birkhead (editors). The Cambridge Encyclopedia of Ornithology. 1991. Cambridge: Cambridge University Press. ISBN 0-521-36205-9.
  • Campbell, Bruce, and Elizabeth Lack (editors). A Dictionary of Birds. 1985. Calton: T&A D Poyse. ISBN 0-85661-039-9.
  • Wilson, Barry (editor). Readings from Scientific American, Birds. 1980. San Francisco: WH Freeman. ISBN 0-7167-1206-7.
  • Alexander, David E. Nature's Flyers: Birds, Insects, and the Biomechanics of Flight. 2002(hardcover) and 2004(paperback). Baltimore: The Johns Hopkins University Press. ISBN 0-8018-6756-8(hardcover) and 0801880599(paperback).
  • Cornell Laboratory of Ornithology handbook of bird biology. 2004(hardcover). Princeton University Press. ISBN 0-938-02762-x(hardcover).
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Bird_flight". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE