To use all functions of this page, please activate cookies in your browser.
my.bionity.com
With an accout for my.bionity.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Mechanical ventilation
Additional recommended knowledge
HistoryVesalius was the first person to describe mechanical ventilation by inserting a reed or cane into the trachea of animals and then blowing into this tube.[1] Negative pressure machinesThe iron lung, also known as the Drinker and Shaw tank, was developed in 1929 and was one of the first negative-pressure machines used for long-term ventilation. It was refined and used in the 20th century largely as a result of the polio epidemic that struck the world in the 1950s. The machine is effectively a large elongated tank, which encases the patient up to the neck. The neck is sealed with a rubber gasket so that the patient's face (and airway) are exposed to the room air. While the exchange of oxygen and carbon dioxide between the bloodstream and the pulmonary airspace works by diffusion and requires no external work, air must be moved into and out of the lungs to make it available to the gas exchange process. In spontaneous breathing, a negative pressure is created in the pleural cavity by the muscles of respiration, and the resulting gradient between the atmospheric pressure and the pressure inside the thorax generates a flow of air. In the iron lung by means of a pump, the air is withdrawn mechanically to produce a vacuum inside the tank, thus creating negative pressure. This negative pressure leads to expansion of the chest, which causes a decrease in intrapulmonary pressure and flow of ambient air into the lungs. As the vacuum is released, the pressure inside the tank equalizes to that of the ambient pressure, and the elastic coil of the chest and lungs leads to passive exhalation. However, when the vacuum is created, the abdomen also expands along with the lung, cutting off venous flow back to the heart, leading to pooling of venous blood in the lower extremities. There are large portholes for nurse or home assistant access. The patients can talk and eat normally, and can see the world through a well-placed series of mirrors. Some could remain in these iron lungs for years at a time quite successfully. Today, negative pressure mechanical ventilators are still in use, notably with the Polio Wing Hospitals in England such as St Thomas' (by Westminster in London) and the John Radcliffe in Oxford. The prominent device used is a smaller device known as the cuirass. The cuirass is a shell-like unit, creating negative pressure only to the chest using a combination of a fitting shell and a soft bladder. Its main use is in patients with neuromuscular disorders who have some residual muscular function. However, it was prone to falling off and caused severe chafing and skin damage and was not used as a long term device. In recent years this device has re-surfaced as a modern polycarbonate shell with multiple seals and a high pressure oscillation pump in order to carry out biphasic cuirass ventilation. Positive pressure machinesThe design of the modern positive-pressure ventilators were mainly based on technical developments by the military during World War II to supply oxygen to fighter pilots in high altitude. Such ventilators replaced the iron lungs as safe endotracheal tubes with high volume/low pressure cuffs were developed. The popularity of positive-pressure ventilators rose during the polio epidemic in the 1950s in Scandinavia and the United States. Positive pressure through manual supply of 50% oxygen through a tracheostomy tube led to a reduced mortality rate among patients with polio and respiratory paralysis. However, because of the sheer amount of man-power required for such intervention, positive-pressure ventilators became increasingly popular. Positive-pressure ventilators work by increasing the patient's airway pressure through an endotracheal or tracheostomy tube. The positive pressure allows air to flow into the airway until the ventilator breath is terminated. Subsequently, the airway pressure drops to zero, and the elastic recoil of the chest wall and lungs push the tidal volume -- the breath -- out through passive exhalation. This is an example of a neonatal(infant) ventilator. Indications for useMechanical ventilation is indicated when the patient's spontaneous ventilation is inadequate to maintain life. It is also indicated as prophylaxis for imminent collapse of other physiologic functions, or ineffective gas exchange in the lungs. Because mechanical ventilation only serves to provide assistance for breathing and does not cure a disease, the patient's underlying condition should be correctable and should resolve over time. In addition, other factors must be taken into consideration because mechanical ventilation is not without its complications (see below) Common medical indications for use include:
Types of ventilatorsVentilation can be delivered via:
Modes of ventilationConventional ventilationThe modes of ventilation can be thought of as classifications based on how to control the ventilator breath. Traditionally ventilators were classified based on how they determined when to stop giving a breath. The three traditional categories of ventilators are listed below. As microprocessor technology is incorporated into ventilator design, the distinction among these types has become less clear as ventilators may use combinations of all of these modes as well as flow-sensing, which controls the ventilator breath based on the flow-rate of gas versus a specific volume, pressure, or time. Breath termination
Both pressure and volume modes of ventilation have their respective limitations. Many manufacturers provide a mode or modes that utilize some functions of each. These modes are flow-variable, volume-targeted, pressure-regulated, time-limited modes (for example, pressure-regulated volume control - PRVC). This means that instead of providing an exact tidal volume each breath, a target volume is set and the ventilator will vary the inspiratory flow at each breath to achieve the target volume at the lowest possible peak pressure. The inspiratory time limits the length of the inspiratory cycle and therefore the I:E ratio. Pressure regulated modes such as PRVC or Auto-flow (Draeger) can most easily be thought of as turning a volume mode into a pressure mode with the added benefit of maintaining more control over tidal volume than with strictly pressure-control. Breath initiationThe other method of classifying mechanical ventilation is based on how to determine when to start giving a breath. Similar to the termination classification noted above, microprocessor control has resulted in a myriad of hybrid modes that combine features of the traditional classifications. Note that most of the timing initiation classifications below can be combined with any of the termination classifications listed above.
High Frequency Ventilation (HFV)High-Frequency Ventilation refers to ventilation that occurs at rates significantly above that found in natural breathing (as high as 300-900 "breaths" per minute). Within the category of high-frequency ventilation, the two principal types are flow interruption and high-frequency oscillatory ventilation (HFOV). The former operates similarly to a conventional ventilator, providing increased circuit pressure during the inspiratory phase and dropping back to PEEP during the expiratory phase. In HFOV the pressure wave is driven by an electromagnetically controlled diaphragm similar to a loudspeaker. Because this can rapidly change the volume in the circuit, HFOV can produce a pressure that is lower than ambient pressure during the expiratory phase. This is sometimes called "active" expiration. In both types of high-frequency ventilation the pressure wave that is generated at the ventilator is markedly attenuated by passage down the endotracheal tube and the major conducting airways. This helps protect the alveoli from volutrauma that occurs with traditional positive pressure ventilation. Although the alveoli are kept at a relatively constant volume, similar to CPAP, other mechanisms of gas exchange allow ventilation (the removal of CO2) to occur without tidal volume exchange. Ventilation in HFV is a function of frequency, amplitude, and I:E ratio and is best described graphically as the area under the curve of an oscillatory cycle. Amplitude is analogous to tidal volume in conventional ventilation; larger amplitudes remove more CO2. Paradoxically, lower frequencies remove more CO2 in HFOV whereas in conventional ventilation the opposite is true. As frequency increases, the total time for a single cycle decreases (the oscillatory curve is shortened thereby decreasing the area under the curve and thus ventilation). I-time is set as a percentage of total time (usually 33%). Amplitude is a function of power and is subject to variability due to changes in compliance or resistance. Therefore, power requirements may vary significantly during treatment and from patient to patient. Patient characteristics and ventilator settings determine whether PaCO2 changes may be more sensitive to amplitude or frequency manipulation. In HFOV, mean airway pressure (MAP) is delivered via a continuous flow through the patient circuit which passes through a variable restriction valve (mushroom valve) on the expiratory limb. Increasing the flow through the circuit and/or increasing the pressure in the mushroom valve increases MAP. The MAP in HFOV functions similarly to PEEP in conventional ventilation in that it provides the pressure for alveolar recruitment. Choosing amongst ventilator modesAssist-control mode minimizes patient effort by providing full mechanical support with every breath. This is often the initial mode chosen because it provides the greatest degree of support. In patients with less severe respiratory failure, other modes such as SIMV may be appropriate. Assist-control mode should not be used in those patients with a potential for respiratory alkalosis, in which the patient has an increased respiratory drive. Such hyperventilation and hypocapnia (decreased systemic carbon dioxide due to hyperventilation) usually occurs in patients with end-stage liver disease, hyperventilatory sepsis, and head trauma. Respiratory alkalosis will be evident from the initial arterial blood gas obtained, and the mode of ventilation can then be changed if so desired. Positive End Expiratory Pressure may or may not be employed to prevent atelectasis. High frequency oscillation is used most frequently in neonates, but is also used as an alternative mode in adults with severe ARDS. Initial ventilator settingsThe following are general guidelines that may need to be modified for the individual patient. Tidal Volume, Rate, and Pressures
As the amount of tidal volume increases, the pressure required to administer that volume is increased. This pressure is known as the peak airway pressure. If the peak airway pressure is persistently above 45 cmH2O for adults, the risk of barotrauma is increased (see below) and efforts should be made to try to reduce the peak airway pressure. In infants and children it is unclear what level of peak pressure may cause damage. In general, keeping peak pressures below 30 is desirable. Monitoring for barotrauma can also involve measuring the plateau pressure, which is the pressure after the delivery of the tidal volume but before the patient is allowed to exhale. Normal breathing pattern involves inspiration, then expiration. The ventilator is programmed so that after delivery of the tidal volume (inspiration), the patient is not allowed to exhale for a half a second. Therefore, pressure must be maintained in order to prevent exhalation, and this pressure is the plateau pressure. Barotrauma is minimized when the plateau pressure is maintained < 30-35 cmH2O. SighsAn adult patient breathing spontaneously will usually sigh about 6-8 times/hr to prevent microatelectasis, and this has led some to propose that ventilators should deliver 1.5-2 times the amount of the preset tidal volume 6-8 times/hr to account for the sighs. However, such high quantity of volume delivery requires very high peak pressure that predisposes to barotrauma. Currently, accounting for sighs is not recommended if the patient is receiving 10-12 mL/kg or is on PEEP. If the tidal volume used is lower, the sigh adjustment can be used, as long as the peak and plateau pressures are acceptable. Sighs are not generally used with ventilation of infants and young children. Initial FiO2Because the mechanical ventilator is responsible for assisting in a patient's breathing, it must then also be able to deliver an adequate amount of oxygen in each breath. The FiO2 stands for fraction of inspired oxygen, which means the percent of oxygen in each breath that is inspired. (Note that normal room air has ~21% oxygen content). In adult patients who can tolerate higher levels of oxygen for a period of time, the initial FiO2 may be set at 100% until arterial blood gases can document adequate oxygenation. An FiO2 of 100% for an extended period of time can be dangerous, but it can protect against hypoxemia from unexpected intubation problems. For infants, and especially in premature infants, avoiding high levels of FiO2 (>60%) is important. Positive end-expiratory pressure (PEEP)PEEP is an adjuvant to the mode ventilation used in cases where the FRC is reduced. At the end of expiration, the PEEP exerts pressure to oppose passive emptying of the lung and to keep the airway pressure above the atmospheric pressure. The presence of PEEP opens up collapse or unstable alveoli and increases the FRC and surface area for gas exchange, thus reducing the size of the shunt. Thus, if a large shunt is found to exist based on the estimation from 100% FiO2 (see above), then PEEP can be considered and the FiO2 can be lowered (< 60%) to still maintain an adequate PaO2, thus reducing the risk of oxygen toxicity. In addition to treating a shunt, PEEP is also therapeutic in decreasing the work of breathing. In pulmonary physiology, compliance is a measure of the "stiffness" of the lung and chest wall. The mathematical formula for compliance (C) = change in volume / change in pressure. Therefore, a higher compliance means that only small increases in pressure can lead to large increases in volume, which means the work of breathing is reduced. As the FRC increases with PEEP, the compliance also increases, since the partially inflated lung takes less energy to inflate further. Indications. PEEP is a cardio-depressant and can cause severe haemodynamic consequences through decreasing venous return to the right heart and decreasing right ventricular. As such, it should be judiciously used and is indicated in two circumstances.
If used, PEEP is usually set with the minimal positive pressure to maintain an adequate PaO2 with a safe FiO2. As PEEP increase intrathoracic pressure, there can be a resulting decrease in venous return and decrease in cardiac output. A PEEP of less than 10 cmH2O is usually safe if intravascular volume depletion is absent. Older literature recommended routine placement of a Swan-Ganz catheter if the amount of PEEP used is greater than 10 cmH2 for hemodynamic monitoring. More recent literature has failed to find outcome benefits with routine PA catheterisation when compared to simple central venous pressure monitoring.[2] If cardiac output measurement is required, minimally invasive techniques, such as oesophageal doppler monitoring or arterial waveform contour monitoring may be sufficient alternatives.[3][4] PEEP should be withdrawn from a patient until adequate PaO2 can be maintained with a FiO2 < 40%. When withdrawing, it is decreased through 1-2 cmH2O decrements while monitoring haemoglobin-oxygen saturations. Any unacceptable haemoglobin-oxygen saturation should prompt reinstitution of the last PEEP level that maintained good saturation. PositioningProne (face down) positioning has been used in patients with ARDS and severe hypoxemia. It improves FRC, drainage of secretions, and ventilation-perfusion matching (efficiency of gas exchange). It may improve oxygenation in > 50% of patients, but no survival benefit has been documented. SedationMost patients receive sedation through a continuous infusion or scheduled dosing to help with anxiety or psychological stress. Daily interruption of sedation is commonly helpful to the patient for reorientation and appropriate weaning. Prophylaxis
Modification of settingsIn adults when 100% FiO2 is used initially, it is easy to calculate the next FiO2 to be used and easy to estimate the shunt fraction. The estimated shunt fraction refers to the amount of oxygen not being absorbed into the circulation. In normal physiology, gas exchange (oxygen/carbon dioxide) occurs at the level of the alveoli in the lungs. The existence of a shunt refers to any process that hinders this gas exchange, leading to wasted oxygen inspired and the flow of un-oxygenated blood back to the left heart (which ultimately supplies the rest of the body with unoxygenated blood). When using 100% FiO2, the degree of shunting is estimated by subtracting the measured PaO2 (from an arterial blood gas) from 700 mmHg. For each difference of 100 mmHg, the shunt is 5%. A shunt of more than 25% should prompt a search for the cause of this hypoxemia, such as mainstem intubation or pneumothorax, and should be treated accordingly. If such complications are not present, other causes must be sought after, and PEEP should be used to treat this intrapulmonary shunt. Other such causes of a shunt include:
When to Withdraw Mechanical VentilationWithdrawal from mechanical ventilation --- also known as weaning --- should not be delayed unnecessarily, nor should it be done prematurely. Patients should have their ventilation considered for withdrawal if they are able to support their own ventilation and oxygenation, and this should be assessed continuously. There are several objective parameters to look for when considering withdrawal, but there is no specific criteria that generalizes to all patients. Non-invasive ventilation (Non-invasive Positive Pressure Ventilation or NIPPV)This refers to all modalities that assist ventilation without the use of an endotracheal tube. Non-invasive ventilation is primarily aimed at minimizing patient discomfort and the complications associated with invasive ventilation. It is often used in cardiac disease, exacerbations of chronic pulmonary disease, sleep apnea, and neuromuscular diseases. Non-invasive ventilation refers only to the patient interface and not the mode of ventilation used; modes may include spontanteous or control modes and may be either pressure or volume modes. Some commonly used modes of NIPPV include:
Connection to ventilatorsThere are various procedures and mechanical devices that provide protection against airway collapse, air leakage, and aspiration:
TerminologyTerminology used in the field of mechanical ventilation and respiratory support:
References
Sources and External Links
Categories: Intensive care medicine | Pulmonology |
|
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Mechanical_ventilation". A list of authors is available in Wikipedia. |